Prostate cancer (PCa) is the most frequently diagnosed cancer in men and the second most common cause of cancer-related mortality among men in the developed world. Conventional anti-PCa therapies include surgery, radiation, hormonal ablation, and chemotherapy. Despite increasing efforts, these therapies are not effective for patients with advanced and/or metastatic disease. In most cases, cancer therapies fail due to an incomplete depletion of tumor cells, resulting in tumor relapse. The cancer stem cell (CSC) hypothesis is an emerging model that explains many of the molecular characteristics of oncological disease as well as the tendency of cancers to relapse, metastasize, and develop resistance to conventional therapies. CSCs are a reservoir of cancer cells that exhibit properties of self-renewal and the ability to reestablish the heterogeneous tumor cell population. The existence of PCa stem cells offers a theoretical explanation for many uncertainties regarding PCa and also for treatment resistance and disease progression once clinical cure is achieved. Therapies targeting CSCs might therefore lead to more effective cancer treatments, divergent from a traditional anti-proliferative approach, based on tumor bulk reduction accompanied by CSC-specific inhibition. Here, we focus on reviewing the historical perspective as well as concepts regarding stem cells and CSCs in PCa. In addition, we will report possible strategies and new clinical approaches that address the CSC-based concept of tumorigenesis in PCa.

1.
Deng Q, Tang DG: Androgen receptor and prostate cancer stem cells: biological mechanisms and clinical implications. Endocr Relat Cancer 2015;22:T209-T220.
2.
Shen MM, Abate-Shen C: Molecular genetics of prostate cancer: new prospects for old challenges. Genes Dev 2010;24:1967-2000.
3.
Chen X, Rycaj K, Liu X, Tang DG: New insights into prostate cancer stem cells. Cell Cycle 2013;12:579-586.
4.
Mayer MJ, Klotz LH, Venkateswaran V: Metformin and prostate cancer stem cells: a novel therapeutic target. Prostate Cancer Prostatic Dis 2015;18:303-309.
5.
Di Zazzo E, Galasso G, Giovannelli P, Di Donato M, Di Santi A, Cernera G, Rossi V, Abbondanza C, Moncharmont B, Sinisi AA, Castoria G, Migliaccio A: Prostate cancer stem cells: the role of androgen and estrogen receptors. Oncotarget 2016;7:193-208.
6.
Yu C, Yao Z, Jiang Y, Keller ET: Prostate cancer stem cell biology. Minerva Urol Nefrol 2012;64:19-33.
7.
Ni J, Cozzi P, Hao J, Duan W, Graham P, Kearsley J, Li Y: Cancer stem cells in prostate cancer chemoresistance. Curr Cancer Drug Targets 2014;14:225-240.
8.
Sharpe B, Beresford M, Bowen R, Mitchard J, Chalmers AD: Searching for prostate cancer stem cells: markers and methods. Stem Cell Rev 2013;9:721-730.
9.
Kerr CL, Hussain A: Regulators of prostate cancer stem cells. Curr Opin Oncol 2014;26:328-333.
10.
Zhang K, Zhou S, Wang L, Wang J, Zou Q, Zhao W, Fu Q, Fang X: Current stem cell biomarkers and their functional mechanisms in prostate cancer. Int J Mol Sci 2016;17:pii:E1163.
11.
Wang G, Wang Z, Sarkar FH, Wei W: Targeting prostate cancer stem cells for cancer therapy. Discov Med 2012;13:135-142.
12.
Bonnet D, Dick JE: Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997;3:730-737.
13.
Weissman IL: Stem cells: units of development, units of regeneration, and units in evolution. Cell 2000;100:157-168.
14.
Li F, Tiede B, Massague J, Kang Y: Beyond tumorigenesis: cancer stem cells in metastasis. Cell Res 2007;17:3-14.
15.
Reya T, Morrison SJ, Clarke MF, Weissman IL: Stem cells, cancer, and cancer stem cells. Nature 2001;414:105-111.
16.
Mimeault M, Batra SK: Great promise of tissue-resident adult stem/progenitor cells in transplantation and cancer therapies. Adv Exp Med Biol 2012;741:171-186.
17.
Cheng T, Rodrigues N, Shen H, Yang Y, Dombkowski D, Sykes M, Scadden DT: Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science 2000;287:1804-1808.
18.
De Marzo AM, Nelson WG, Meeker AK, Coffey DS: Stem cell features of benign and malignant prostate epithelial cells. J Urol 1998;160(6 pt 2):2381-2392.
19.
Signoretti S, Loda M: Prostate stem cells: from development to cancer. Semin Cancer Biol 2007;17:219-224.
20.
Ousset M, Van Keymeulen A, Bouvencourt G, Sharma N, Achouri Y, Simons BD, Blanpain C: Multipotent and unipotent progenitors contribute to prostate postnatal development. Nat Cell Biol 2012;14:1131-1138.
21.
George FW, Peterson KG: 5α-Dihydrotestosterone formation is necessary for embryogenesis of the rat prostate. Endocrinology 1988;122:1159-1164.
22.
Lang SH, Frame FM, Collins AT: Prostate cancer stem cells. J Pathol 2009;217:299-306.
23.
Bonkhoff H, Remberger K: Differentiation pathways and histogenetic aspects of normal and abnormal prostatic growth: a stem cell model. Prostate 1996;28:98-106.
24.
Shibata M, Shen MM: Stem cells in genetically-engineered mouse models of prostate cancer. Endocr Relat Cancer 2015;22:T199-T208.
25.
Peehl DM, Leung GK, Wong ST: Keratin expression: a measure of phenotypic modulation of human prostatic epithelial cells by growth inhibitory factors. Cell Tissue Res 1994;277:11-18.
26.
Hudson DL, Guy AT, Fry P, O'Hare MJ, Watt FM, Masters JR: Epithelial cell differentiation pathways in the human prostate: identification of intermediate phenotypes by keratin expression. J Histochem Cytochem 2001;49:271-278.
27.
Wang Y, Hayward S, Cao M, Thayer K, Cunha G: Cell differentiation lineage in the prostate. Differentiation 2001;68:270-279.
28.
Huang CK, Luo J, Lee SO, Chang C: Concise review: androgen receptor differential roles in stem/progenitor cells including prostate, embryonic, stromal, and hematopoietic lineages. Stem Cells 2014;32:2299-2308.
29.
Bonkhoff H: Role of the basal cells in premalignant changes of the human prostate: a stem cell concept for the development of prostate cancer. Eur Urol 1996;30:201-205.
30.
Evans GS, Chandler JA: Cell proliferation studies in rat prostate. I. The proliferative role of basal and secretory epithelial cells during normal growth. Prostate 1987;10:163-178.
31.
Evans GS, Chandler JA: Cell proliferation studies in the rat prostate: II. The effects of castration and androgen-induced regeneration upon basal and secretory cell proliferation. Prostate 1987;11:339-351.
32.
Collins AT, Maitland NJ: Prostate cancer stem cells. Eur J Cancer 2006;42:1213-1218.
33.
Maitland NJ, Collins AT: Prostate cancer stem cells: a new target for therapy. J Clin Oncol 2008;26:2862-2870.
34.
Yang T, Rycaj K: Targeted therapy against cancer stem cells. Oncol Lett 2015;10:27-33.
35.
Chen K, Huang YH, Chen JL: Understanding and targeting cancer stem cells: therapeutic implications and challenges. Acta Pharmacol Sin 2013;34:732-740.
36.
Tang DG: Cancers of the breast and prostate: a stem cell perspective. Endocr Relat Cancer 2015;22:E9-E11.
37.
Han L, Shi S, Gong T, Zhang Z, Sun X: Cancer stem cells: therapeutic implications and perspectives in cancer therapy. Acta Pharmaceutica Sinica B 2013;3:65-75.
38.
Kasper S: Identification, characterization, and biological relevance of prostate cancer stem cells from clinical specimens. Urol Oncol 2009;27:301-303.
39.
Pan Q, Li Q, Liu S, Ning N, Zhang X, Xu Y, Chang AE, Wicha MS: Concise review: targeting cancer stem cells using immunologic approaches. Stem Cells 2015;33:2085-2092.
40.
Visvader JE, Lindeman GJ: Cancer stem cells: current status and evolving complexities. Cell Stem Cell 2012;10:717-728.
41.
Richardson GD, Robson CN, Lang SH, Neal DE, Maitland NJ, Collins AT: CD133, a novel marker for human prostatic epithelial stem cells. J Cell Sci 2004;117(pt 16):3539-3545.
42.
Xin L, Lawson DA, Witte ON: The Sca-1 cell surface marker enriches for a prostate-regenerating cell subpopulation that can initiate prostate tumorigenesis. Proc Natl Acad Sci U S A 2005;102:6942-6947.
43.
Rizzo S, Attard G, Hudson DL: Prostate epithelial stem cells. Cell Prolif 2005;38:363-374.
44.
Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ: Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 2005;65:10946-10951.
45.
Lin X, Farooqi AA, Qureshi MZ, Romero MA, Tabassum S, Ismail M: Prostate cancer stem cells: viewing signaling cascades at a finer resolution. Arch Immunol Ther Exp (Warsz) 2016;64:217-223.
46.
Rajasekhar VK, Studer L, Gerald W, Socci ND, Scher HI: Tumour-initiating stem-like cells in human prostate cancer exhibit increased NF-kappaB signalling. Nat Commun 2011;2:162.
47.
Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, Varambally S, Cao X, Tchinda J, Kuefer R, Lee C, Montie JE, Shah RB, Pienta KJ, Rubin MA, Chinnaiyan AM: Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 2005;310:644-648.
48.
Birnie R, Bryce SD, Roome C, Dussupt V, Droop A, Lang SH, Berry PA, Hyde CF, Lewis JL, Stower MJ, Maitland NJ, Collins AT: Gene expression profiling of human prostate cancer stem cells reveals a pro-inflammatory phenotype and the importance of extracellular matrix interactions. Genome Biol 2008;9:R83.
49.
Polson ES, Lewis JL, Celik H, Mann VM, Stower MJ, Simms MS, Rodrigues G, Collins AT, Maitland NJ: Monoallelic expression of TMPRSS2/ERG in prostate cancer stem cells. Nat Commun 2013;4:1623.
50.
Chakraborty C, Chin KY, Das S: miRNA-regulated cancer stem cells: understanding the property and the role of miRNA in carcinogenesis. Tumour Biol 2016;37:13039-13048.
51.
Tao ZQ, Shi AM, Li R, Wang YQ, Wang X, Zhao J: Role of microRNA in prostate cancer stem/progenitor cells regulation. Eur Rev Med Pharmacol Sci 2016;20:3040-3044.
52.
Kong YW, Ferland-McCollough D, Jackson TJ, Bushell M: microRNAs in cancer management. Lancet Oncol 2012;13:e249-e258.
53.
Gandellini P, Giovannetti E, Nicassio F: MicroRNAs in cancer management: big challenges for small molecules. Biomed Res Int 2015;2015:982156.
54.
Fu W, Tao T, Qi M, Wang L, Hu J, Li X, Xing N, Du R, Han B: MicroRNA-132/212 upregulation inhibits TGF-β-mediated epithelial-mesenchymal transition of prostate cancer cells by targeting SOX4. Prostate 2016;76:1560-1570.
55.
Zhu J, Wang S, Zhang W, Qiu J, Shan Y, Yang D, Shen B: Screening key microRNAs for castration-resistant prostate cancer based on miRNA/mRNA functional synergistic network. Oncotarget 2015;6:43819-43830.
56.
Sun Y, Gao WQ: Human prostate cancer stem cells: new features unveiled. Asian J Androl 2011;13:355-356.
57.
Wongtrakoongate P: Epigenetic therapy of cancer stem and progenitor cells by targeting DNA methylation machineries. World J Stem Cells 2015;7:137-148.
58.
McCubrey JA, Abrams SL, Fitzgerald TL, Cocco L, Martelli AM, Montalto G, Cervello M, Scalisi A, Candido S, Libra M, Steelman LS: Roles of signaling pathways in drug resistance, cancer initiating cells and cancer progression and metastasis. Adv Biol Regul 2015;57:75-101.
59.
Clayton S, Mousa SA: Therapeutics formulated to target cancer stem cells: is it in our future? Cancer Cell Int 2011;11:7.
60.
Gupta R, Vyas P, Enver T: Molecular targeting of cancer stem cells. Cell Stem Cell 2009;5:125-126.
61.
Weiner LM, Dhodapkar MV, Ferrone S: Monoclonal antibodies for cancer immunotherapy. Lancet 2009;373:1033-1040.
62.
Takebe N, Harris PJ, Warren RQ, Ivy SP: Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat Rev Clin Oncol 2011;8:97-106.
63.
Nanta R, Kumar D, Meeker D, Rodova M, Van Veldhuizen PJ, Shankar S, Srivastava RK: NVP-LDE-225 (Erismodegib) inhibits epithelial-mesenchymal transition and human prostate cancer stem cell growth in NOD/SCID IL2Rγ null mice by regulating Bmi-1 and microRNA-128. Oncogenesis 2013;2:e42.
64.
Gonnissen A, Isebaert S, Haustermans K: Hedgehog signaling in prostate cancer and its therapeutic implication. Int J Mol Sci 2013;14:13979-14007.
65.
Karhadkar SS, Bova GS, Abdallah N, Dhara S, Gardner D, Maitra A, Isaacs JT, Berman DM, Beachy PA: Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature 2004;431:707-712.
66.
Lauth M, Bergstrom A, Shimokawa T, Toftgard R: Inhibition of GLI-mediated transcription and tumor cell growth by small-molecule antagonists. Proc Natl Acad Sci U S A 2007;104:8455-8460.
67.
Rimkus TK, Carpenter RL, Qasem S, Chan M, Lo HW: Targeting the sonic hedgehog signaling pathway: review of smoothened and GLI inhibitors. Cancers (Basel) 2016;8:pii:E22.
68.
Gonnissen A, Isebaert S, Haustermans K: Targeting the Hedgehog signaling pathway in cancer: beyond Smoothened. Oncotarget 2015;6:13899-13913.
69.
Hanna A, Shevde LA: Hedgehog signaling: modulation of cancer properies and tumor mircroenvironment. Mol Cancer 2016;15:24.
70.
McDermott SP, Wicha MS: Targeting breast cancer stem cells. Mol Oncol 2010;4:404-419.
71.
Yardy GW, Brewster SF: Wnt signalling and prostate cancer. Prostate Cancer Prostatic Dis 2005;8:119-126.
72.
Sheikh A, Niazi AK, Ahmed MZ, Iqbal B, Anwer SM, Khan HH: The role of Wnt signaling pathway in carcinogenesis and implications for anticancer therapeutics. Hered Cancer Clin Pract 2014;12:13.
73.
Le PN, McDermott JD, Jimeno A: Targeting the Wnt pathway in human cancers: therapeutic targeting with a focus on OMP-54F28. Pharmacol Ther 2015;146:1-11.
74.
Yang K, Wang X, Zhang H, Wang Z, Nan G, Li Y, Zhang F, Mohammed MK, Haydon RC, Luu HH, Bi Y, He TC: The evolving roles of canonical WNT signaling in stem cells and tumorigenesis: implications in targeted cancer therapies. Lab Invest 2016;96:116-136.
75.
Gurney A, Axelrod F, Bond CJ, Cain J, Chartier C, Donigan L, Fischer M, Chaudhari A, Ji M, Kapoun AM, Lam A, Lazetic S, Ma S, Mitra S, Park IK, Pickell K, Sato A, Satyal S, Stroud M, Tran H, Yen WC, Lewicki J, Hoey T: Wnt pathway inhibition via the targeting of Frizzled receptors results in decreased growth and tumorigenicity of human tumors. Proc Natl Acad Sci U S A 2012;109:11717-11722.
76.
Liu J, Pan S, Hsieh MH, Ng N, Sun F, Wang T, Kasibhatla S, Schuller AG, Li AG, Cheng D, Li J, Tompkins C, Pferdekamper A, Steffy A, Cheng J, Kowal C, Phung V, Guo G, Wang Y, Graham MP, Flynn S, Brenner JC, Li C, Villarroel MC, Schultz PG, Wu X, McNamara P, Sellers WR, Petruzzelli L, Boral AL, Seidel HM, McLaughlin ME, Che J, Carey TE, Vanasse G, Harris JL: Targeting Wnt-driven cancer through the inhibition of Porcupine by LGK974. Proc Natl Acad Sci U S A 2013;110:20224-20229.
77.
Feitelson MA, Arzumanyan A, Kulathinal RJ, Blain SW, Holcombe RF, Mahajna J, Marino M, Martinez-Chantar ML, Nawroth R, Sanchez-Garcia I, Sharma D, Saxena NK, Singh N, Vlachostergios PJ, Guo S, Honoki K, Fujii H, Georgakilas AG, Bilsland A, Amedei A, Niccolai E, Amin A, Ashraf SS, Boosani CS, Guha G, Ciriolo MR, Aquilano K, Chen S, Mohammed SI, Azmi AS, Bhakta D, Halicka D, Keith WN, Nowsheen S: Sustained proliferation in cancer: mechanisms and novel therapeutic targets. Semin Cancer Biol 2015;35(suppl):S25-S54.
78.
Wang XD, Shou J, Wong P, French DM, Gao WQ: Notch1-expressing cells are indispensable for prostatic branching morphogenesis during development and re-growth following castration and androgen replacement. J Biol Chem 2004;279:24733-24744.
79.
Yuan X, Wu H, Xu H, Xiong H, Chu Q, Yu S, Wu GS, Wu K: Notch signaling: an emerging therapeutic target for cancer treatment. Cancer Lett 2015;369:20-27.
80.
Carvalho FL, Simons BW, Eberhart CG, Berman DM: Notch signaling in prostate cancer: a moving target. Prostate 2014;74:933-945.
81.
Tapia MA, Gonzalez-Navarrete I, Dalmases A, Bosch M, Rodriguez-Fanjul V, Rolfe M, Ross JS, Mezquita J, Mezquita C, Bachs O, Gascon P, Rojo F, Perona R, Rovira A, Albanell J: Inhibition of the canonical IKK/NF kappa B pathway sensitizes human cancer cells to doxorubicin. Cell Cycle 2007;6:2284-2292.
82.
Peng YM, Zheng JB, Zhou YB, Li J: Characterization of a novel curcumin analog P1 as potent inhibitor of the NF-κB signaling pathway with distinct mechanisms. Acta pharmacol Sin 2013;34:939-950.
83.
Jin R, Yi Y, Yull FE, Blackwell TS, Clark PE, Koyama T, Smith JA Jr, Matusik RJ: NF-κB gene signature predicts prostate cancer progression. Cancer Res 2014;74:2763-2772.
84.
Nguyen DP, Li J, Yadav SS, Tewari AK: Recent insights into NF-κB signalling pathways and the link between inflammation and prostate cancer. BJU Int 2014;114:168-176.
85.
Chen D, Frezza M, Schmitt S, Kanwar J, Dou QP: Bortezomib as the first proteasome inhibitor anticancer drug: current status and future perspectives. Curr Cancer Drug Targets 2011;11:239-253.
86.
Heath EI, Hillman DW, Vaishampayan U, Sheng S, Sarkar F, Harper F, Gaskins M, Pitot HC, Tan W, Ivy SP, Pili R, Carducci MA, Erlichman C, Liu G: A phase II trial of 17-allylamino-17-demethoxygeldanamycin in patients with hormone-refractory metastatic prostate cancer. Clin Cancer Res 2008;14:7940-7946.
87.
Hu Y, Guo R, Wei J, Zhou Y, Ji W, Liu J, Zhi X, Zhang J: Effects of PI3K inhibitor NVP-BKM120 on overcoming drug resistance and eliminating cancer stem cells in human breast cancer cells. Cell Death Dis 2015;6:e2020.
88.
Dean M, Fojo T, Bates S: Tumour stem cells and drug resistance. Nat Rev Cancer 2005;5:275-284.
89.
Shukla S, Ohnuma S, Ambudkar SV: Improving cancer chemotherapy with modulators of ABC drug transporters. Curr Drug Targets 2011;12:621-630.
90.
Rybalchenko V, Prevarskaya N, Van Coppenolle F, Legrand G, Lemonnier L, Le Bourhis X, Skryma R: Verapamil inhibits proliferation of LNCaP human prostate cancer cells influencing K+ channel gating. Mol Pharmacol 2001;59:1376-1387.
91.
Lee CR, Chun JN, Kim SY, Park S, Kim SH, Park EJ, Kim IS, Cho NH, Kim IG, So I, Kim TW, Jeon JH: Cyclosporin A suppresses prostate cancer cell growth through CaMKKβ/AMPK-mediated inhibition of mTORC1 signaling. Biochem Pharmacol 2012;84:425-431.
92.
Kawahara T, Kashiwagi E, Ide H, Li Y, Zheng Y, Ishiguro H, Miyamoto H: The role of NFATc1 in prostate cancer progression: cyclosporine A and tacrolimus inhibit cell proliferation, migration, and invasion. Prostate 2015;75:573-584.
93.
Lissoni P, Vigano P, Vaghi M, Frontini L, Giuberti C, Manganini V, Casu M, Brivio F, Niespolo R, Strada G: A phase II study of tamoxifen in hormone-resistant metastatic prostate cancer: possible relation with prolactin secretion. Anticancer Res 2005;25:3597-3599.
94.
Kreis W, Budman DR, Calabro A: A reexamination of PSC 833 (Valspodar) as a cytotoxic agent and in combination with anticancer agents. Cancer Chemother Pharmacol 2001;47:78-82.
95.
Kelly RJ, Draper D, Chen CC, Robey RW, Figg WD, Piekarz RL, Chen X, Gardner ER, Balis FM, Venkatesan AM, Steinberg SM, Fojo T, Bates SE: A pharmacodynamic study of docetaxel in combination with the P-glycoprotein antagonist tariquidar (XR9576) in patients with lung, ovarian, and cervical cancer. Clin Cancer Res 2011;17:569-580.
96.
Takebe N, Nguyen D, Yang SX: Targeting notch signaling pathway in cancer: clinical development advances and challenges. Pharmacol Ther 2014;141:140-149.
97.
Borovski T, De Sousa E M F, Vermeulen L, Medema JP: Cancer stem cell niche: the place to be. Cancer Res 2011;71:634-639.
98.
Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, Oh EY, Gaber MW, Finklestein D, Allen M, Frank A, Bayazitov IT, Zakharenko SS, Gajjar A, Davidoff A, Gilbertson RJ: A perivascular niche for brain tumor stem cells. Cancer Cell 2007;11:69-82.
99.
Folkins C, Man S, Xu P, Shaked Y, Hicklin DJ, Kerbel RS: Anticancer therapies combining antiangiogenic and tumor cell cytotoxic effects reduce the tumor stem-like cell fraction in glioma xenograft tumors. Cancer Res 2007;67:3560-3564.
100.
van der Horst EH, Chinn L, Wang M, Velilla T, Tran H, Madrona Y, Lam A, Ji M, Hoey TC, Sato AK: Discovery of fully human anti-MET monoclonal antibodies with antitumor activity against colon cancer tumor models in vivo. Neoplasia 2009;11:355-364.
101.
Logtenberg MEW, Boonstra J: Cancer stem cells and addicted cancer cells. Oncol Discov 2013;1.
102.
Corn PG: The tumor microenvironment in prostate cancer: elucidating molecular pathways for therapy development. Cancer Manag Res 2012;4:183-193.
103.
Dubrovska A, Elliott J, Salamone RJ, Kim S, Aimone LJ, Walker JR, Watson J, Sauveur-Michel M, Garcia-Echeverria C, Cho CY, Reddy VA, Schultz PG: Combination therapy targeting both tumor-initiating and differentiated cell populations in prostate carcinoma. Clin Cancer Res 2010;16:5692-5702.
104.
Castelo-Branco P, Zhang C, Lipman T, Fujitani M, Hansford L, Clarke I, Harley CB, Tressler R, Malkin D, Walker E, Kaplan DR, Dirks P, Tabori U: Neural tumor-initiating cells have distinct telomere maintenance and can be safely targeted for telomerase inhibition. Clin Cancer Res 2011;17:111-121.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.