Aim: To compare the hemostatic properties of transurethral plasmakinetic resection of the prostate (PKRP) and standard transurethral resection of the prostate (TURP) ex vivo, as perioperative bleeding is still regarded as one of the major complications of transurethral prostatectomy. Materials and Methods: Isolated normal saline (NS)-perfused porcine kidneys were used to determine the hemostatic efficacy of PKRP and TURP. The perfusion fluid loss was semiquantitatively measured in relation to tissue ablation for the two techniques and specimens were evaluated histologically. Results: The PKRP group had a significantly smaller loss of NS than the TURP group (4.16 ± 1.25 and 6.39 ± 1.05 g/min, respectively, p < 0.01). Compared with the measurements with TURP, the depths of the coagulation zones with PKRP were significantly larger (225.09 ± 35.77 and 146.84 ± 18.91 µm, respectively, p< 0.01). Conclusions: PKRP ex vivo was associated with significantly better hemostasis than TURP.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.