Background: The effects of castration on nitric oxide- mediated relaxations and nitric oxide synthase activity in male rat corpus cavernosum smooth muscles. Methods: Eight-week-old male rats were assigned to two groups: control (sham operated) and castrated animals. After 8 weeks, corpus cavernosum smooth muscle strips were mounted in an organ bath for isometric tension recordings. Electrical field stimulation (EFS) was applied to the strips precontracted with 30 µM phenylephrine. The microdialysis probe was inserted into the strip, and Krebs-Henseleit solution was perfused into the probe. The dialysate during EFS and cholinergic stimulation was collected, and the amount of NO2/NO3 (NOx) released in the dialysate was measured by the Greiss method. Sodium nitroprusside and carbachol were cumulatively added to the strips precontracted with 30 µM phenylephrine. Results: EFS caused frequency-dependent relaxations and NOx releases in the strips. Pretreatment with Nω-nitro-L-arginine (100 µM) and tetrodotoxin (1 µM) completely inhibited relaxations and NOx releases. The maximum relaxation in the castration group was significantly greater than that in the control group. The release of NOx was significantly greater in the castration group than in the control group. Sodium nitroprusside relaxed the tissues in both groups similarly. Carbachol failed either to relax the tissue or to increase the amount of NOx production in the tissue. Conclusion: The present data suggest that castration enhances nitric oxide synthase activity and nitric oxide-mediated relaxations in the male rat corpus cavernosum.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.