Background: Renal ischemia/reperfusion (I/R) injury (RIRI) is the main cause of acute kidney injury (AKI) in patients. We investigated the role of miR-182 after renal ischemia/reperfusion (I/R) in rat to characterize the microRNA (miRNA) network activated during development and recovery from RIRI. Methods and Results: 12 h after lethal (45 min) renal ischemia, AKI was verified by renal histology (tubular necrosis and regeneration), blood urea nitrogen level, and renal mRNA expression in Wistar rats. We found that miR-182 markedly increased after renal I/R. In cell hypoxia/reoxygenation model, we found similar upregulation of miR-182. In function gain/loss assay, we confirmed an impaired effect of miR-182 and identified Forkhead box O3 (FoxO3) as a direct downstream target of it. By using miR-182 antagomir, the I/R injury was markedly ameliorated. Conclusions: Our results demonstrate that miR-182 promotes cell apoptosis and I/R injury through directly binding to FoxO3. The present study will provide potential therapeutic targets for renal I/R-induced AKI, and open a new avenue for AKI treatment by manipulating miRNAs levels.

1.
Reddy
MA
,
Natarajan
R
.
Recent developments in epigenetics of acute and chronic kidney diseases
.
Kidney Int
.
2015
;
88
(
2
):
250
61
. .
2.
Hoste
EA
,
Bagshaw
SM
,
Bellomo
R
,
Cely
CM
,
Colman
R
,
Cruz
DN
, et al.
Epidemiology of acute kidney injury in critically ill patients: the multinational aki-epi study
.
Intensive Care Med
.
2015
;
41
(
8
):
1411
23
. .
3.
Ronco
C
.
Acute kidney injury: from clinical to molecular diagnosis
.
Crit Care
.
2016
;
20
(
1
):
201
. .
4.
Liu
J
,
Kumar
S
,
Dolzhenko
E
,
Alvarado
GF
,
Guo
J
,
Lu
C
, et al.
Molecular characterization of the transition from acute to chronic kidney injury following ischemia/reperfusion
.
JCI Insight
.
2017
;
2
(
18
):
e94716
. .
5.
Agarwal
A
,
Dong
Z
,
Harris
R
,
Murray
P
,
Parikh
SM
,
Rosner
MH
, et al.
Cellular and molecular mechanisms of aki
.
J Am Soc Nephrol
.
2016
;
27
(
5
):
1288
99
. .
6.
Chevalier
RL
.
The proximal tubule is the primary target of injury and progression of kidney disease: role of the glomerulotubular junction
.
Am J Physiol Renal Physiol
.
2016
;
311
(
1
):
F145
61
. .
7.
Vendramin
R
,
Marine
JC
,
Leucci
E
.
Non-coding rnas: the dark side of nuclear-mitochondrial communication
.
EMBO J
.
2017
;
36
(
9
):
1123
33
. .
8.
Beermann
J
,
Piccoli
MT
,
Viereck
J
,
Thum
T
.
Non-coding rnas in development and disease: background, mechanisms, and therapeutic approaches
.
Physiol Rev
.
2016
;
96
(
4
):
1297
325
. .
9.
Chau
BN
,
Xin
C
,
Hartner
J
,
Ren
S
,
Castano
AP
,
Linn
G
, et al.
Microrna-21 promotes fibrosis of the kidney by silencing metabolic pathways
.
Sci Transl Med
.
2012
;
4
(
121
):
121ra18
21r
. .
10.
Qureshi
IA
,
Mehler
MF
.
Emerging roles of non-coding rnas in brain evolution, development, plasticity and disease
.
Nat Rev Neurosci
.
2012
;
13
(
8
):
528
41
. .
11.
Berindan-Neagoe
I
,
Monroig Pdel
C
,
Pasculli
B
,
Calin
GA
.
Micrornaome genome: a treasure for cancer diagnosis and therapy
.
CA Cancer J Clin
.
2014
;
64
(
5
):
311
36
. .
12.
Zhou
P
,
Chen
Z
,
Zou
Y
,
Wan
X
.
Roles of non-coding rnas in acute kidney injury
.
Kidney Blood Press Res
.
2016
;
41
(
6
):
757
69
. .
13.
Ichii
O
,
Horino
T
.
Micrornas associated with the development of kidney diseases in humans and animals
.
J Toxicol Pathol
.
2018
;
31
(
1
):
23
34
. .
14.
Granger
DN
,
Kvietys
PR
.
Reperfusion injury and reactive oxygen species: the evolution of a concept
.
Redox Biol
.
2015
;
6
:
524
51
. .
15.
Bonventre
JV
,
Yang
L
.
Cellular pathophysiology of ischemic acute kidney injury
.
J Clin Invest
.
2011
;
121
(
11
):
4210
21
. .
16.
Bhargava
P
,
Schnellmann
RG
.
Mitochondrial energetics in the kidney
.
Nat Rev Nephrol
.
2017
;
13
(
10
):
629
46
. .
17.
Zheng
Y
,
Zhang
Z
,
Zhang
N
.
Protective effects of butyrate on renal ischemia-reperfusion injury in rats
.
Urol Int
.
2019
;
102
(
3
):
348
55
. .
18.
Greco
P
,
Nencini
G
,
Piva
I
,
Scioscia
M
,
Volta
CA
,
Spadaro
S
, et al.
Pathophysiology of hypoxic-ischemic encephalopathy: a review of the past and a view on the future
.
Acta Neurol Belg
.
2020
;
120
(
2
):
277
88
. .
19.
Firouzjaei
MA
,
Haghani
M
,
Shid Moosavi
SM
.
Renal ischemia/reperfusion induced learning and memory deficit in the rat: insights into underlying molecular and cellular mechanisms
.
Brain Res
.
2019
;
1719
:
263
73
. .
20.
Yang
J
,
Li
X
,
Yang
H
,
Long
C
.
Oleanolic acid improves the symptom of renal ischemia reperfusion injury via the pi3k/akt pathway
.
Urol Int
.
2021
;
105
(
3–4
):
215
220
. .
21.
Ma
J
,
Matkar
S
,
He
X
,
Hua
X
.
Foxo family in regulating cancer and metabolism
.
Semin Cancer Biol
.
2018
;
50
:
32
41
. .
22.
Gao
Y
,
Qi
W
,
Sun
L
,
Lv
J
,
Qiu
W
,
Liu
S
.
Foxo3 inhibits human gastric adenocarcinoma (ags) cell growth by promoting autophagy in an acidic microenvironment
.
Cell Physiol Biochem
.
2018
;
49
(
1
):
335
48
. .
23.
Farhan
M
,
Wang
H
,
Gaur
U
,
Little
PJ
,
Xu
J
,
Zheng
W
.
Foxo signaling pathways as therapeutic targets in cancer
.
Int J Biol Sci
.
2017
;
13
(
7
):
815
27
. .
24.
Pan
CW
,
Jin
X
,
Zhao
Y
,
Pan
Y
,
Yang
J
,
Karnes
RJ
, et al.
Akt-phosphorylated foxo1 suppresses erk activation and chemoresistance by disrupting iqgap1-mapk interaction
.
EMBO J
.
2017
;
36
(
8
):
995
1010
. .
25.
Pan
CW
,
Jin
X
,
Zhao
Y
,
Pan
Y
,
Yang
J
,
Karnes
RJ
, et al.
Akt-phosphorylated foxo1 suppresses erk activation and chemoresistance by disrupting iqgap1-mapk interaction
.
EMBO J
.
2017
;
36
(
8
):
995
1010
. .
26.
Accili
D
,
Arden
KC
.
Foxos at the crossroads of cellular metabolism, differentiation, and transformation
.
Cell
.
2004
;
117
(
4
):
421
6
. .
27.
Yin
J
,
Han
P
,
Tang
Z
,
Liu
Q
,
Shi
J
.
Sirtuin 3 mediates neuroprotection of ketones against ischemic stroke
.
J Cereb Blood Flow Metab
.
2015
;
35
(
11
):
1783
9
. .
28.
Wong
HK
,
Veremeyko
T
,
Patel
N
,
Lemere
CA
,
Walsh
DM
,
Esau
C
, et al.
De-repression of foxo3a death axis by microrna-132 and -212 causes neuronal apoptosis in alzheimer’s disease
.
Hum Mol Genet
.
2013
;
22
(
15
):
3077
92
. .
29.
Warr
MR
,
Binnewies
M
,
Flach
J
,
Reynaud
D
,
Garg
T
,
Malhotra
R
, et al.
Foxo3a directs a protective autophagy program in haematopoietic stem cells
.
Nature
.
2013
;
494
(
7437
):
323
7
. .
30.
Hirschberger
S
,
Hinske
LC
,
Kreth
S
.
Mirnas: dynamic regulators of immune cell functions in inflammation and cancer
.
Cancer Lett
.
2018
;
431
:
11
21
. .
31.
Zheng
Y
,
Liu
L
,
Shukla
GC
.
A comprehensive review of web-based non-coding rna resources for cancer research
.
Cancer Lett
.
2017
;
407
:
1
8
. .
32.
Aytac
AH
,
Yucetas
U
,
Erkan
E
,
Yucetas
E
,
Ulusoy
S
,
Kadihasanoglu
M
, et al.
The predictive value of ischemia-modified albumin in renal ischemia-reperfusion injury
.
Urol Int
.
2019
;
103
:
473
81
.
33.
He
X
,
Zou
K
.
Mirna-96-5p contributed to the proliferation of gastric cancer cells by targeting foxo3
.
J Biochem
.
2020
;
167
(
1
):
101
8
. .
34.
Mziaut
H
,
Henniger
G
,
Ganss
K
,
Hempel
S
,
Wolk
S
,
McChord
J
, et al.
Mir-132 controls pancreatic beta cell proliferation and survival through pten/akt/foxo3 signaling
.
Mol Metab
.
2020
;
31
:
150
62
. .
35.
Sarkozy
M
,
Gaspar
R
,
Zvara
A
,
Kiscsatari
L
,
Varga
Z
,
Kovari
B
, et al.
Selective heart irradiation induces cardiac overexpression of the pro-hypertrophic mir-212
.
Front Oncol
.
2019
;
9
:
598
.
36.
Huang
J
,
Jiao
J
,
Xu
W
,
Zhao
H
,
Zhang
C
,
Shi
Y
, et al.
Mir-155 is upregulated in patients with active tuberculosis and inhibits apoptosis of monocytes by targeting foxo3
.
Mol Med Rep
.
2015
;
12
(
5
):
7102
8
. .
37.
Guo
D
,
Ma
J
,
Li
T
,
Yan
L
.
Up-regulation of miR-122 protects against neuronal cell death in ischemic stroke through the heat shock protein 70-dependent NF-κB pathway by targeting FOXO3
.
Exp Cell Res
.
2018
;
369
(
1
):
34
42
. .
38.
Cheng
M
,
An
S
,
Li
J
.
Identifying key genes associated with acute myocardial infarction
.
Medicine
.
2017
;
96
(
42
):
e7741
. .
39.
Kartha
RV
,
Subramanian
S
.
Competing endogenous rnas (cernas): new entrants to the intricacies of gene regulation
.
Front Genet
.
2014
;
5
:
8
. .
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.