The problem of resistance to therapy in prostate cancer (PCa) is multifaceted. Key determinants of drug resistance include tumor burden and growth kinetics, tumor heterogeneity, physical barriers, immune system and microenvironment, undruggable cancer drivers, and consequences of therapeutic pressures. With regard to the fundamental importance of the androgen receptor (AR) in all stages of PCa from tumorigenesis to progression, AR is postulated to have a continued critical role in castration-resistant prostate cancer (CRPC). Suppression of AR signaling mediated by the full-length AR (AR-FL) is the therapeutic goal of all AR-directed therapies. However, AR-targeting agents ultimately lead to AR aberrations that promote PCa progression and drug resistance. Among these AR aberrations, androgen receptor variant 7 (AR-V7) is gaining attention as a potential predictive marker for as well as one of the resistance mechanisms to the most current anti-AR therapies in CRPC. Meanwhile, development of next-generation drugs that directly or indirectly target AR-V7 signaling is urgently needed. In the present review of the current literature, we have summarized the origin, alternative splicing, expression induction, protein conformation, interaction with coregulators, relationship with AR-FL, transcriptional activity, and biological function of AR-V7 in PCa development and therapeutic resistance. We hope this review will help further understand the molecular origin, expression regulation, and role of AR-V7 in the progression of PCa and provide insight into the design of novel selective inhibitors of AR-V7 in PCa treatment.

1.
Torre
LA
,
Bray
F
,
Siegel
RL
,
Ferlay
J
,
Lortet-Tieulent
J
,
Jemal
A
.
Global cancer statistics, 2012
.
CA Cancer J Clin
.
2018
;
65
(
2
):
87
424
.
2.
Trump
DL
.
Commentary on “Intermittent versus continuous androgen deprivation in prostate cancer”. Hussain M, Tangen CM, Berry DL, Higano CS, Crawford ED, Liu G, Wilding G, Prescott S, Kanaga Sundaram S, Small EJ, Dawson NA, Donnelly BJ, Venner PM, Vaishampayan UN, Schellhammer PF, Quinn DI, Raghavan D, Ely B, Moinpour CM, Vogelzang NJ, Thompson IM Jr., University of Michigan, Division of Hematology/Oncology, 1500 E Medical Center Dr., 7314 CC, Ann Arbor, MI. N Engl J Med 2013;368(14):1314–25
.
Urol Oncol
.
2013
;
31
(
8
):
1847
.
3.
Beer
TM
,
Armstrong
AJ
,
Rathkopf
DE
,
Loriot
Y
,
Sternberg
CN
,
Higano
CS
, et al.
Enzalutamide in metastatic prostate cancer before chemotherapy
.
N Engl J Med
.
2014
;
371
(
5
):
424
33
.
4.
Chandrasekar
T
,
Yang
JC
,
Gao
AC
,
Evans
CP
.
Mechanisms of resistance in castration-resistant prostate cancer (CRPC)
.
Transl Androl Urol
.
2015
;
4
(
3
):
365
80
.
5.
Wilson
CM
,
McPhaul
MJ
.
A and B forms of the androgen receptor are present in human genital skin fibroblasts
.
Proc Natl Acad Sci U S A
.
1994
;
91
(
4
):
1234
8
.
6.
Gregory
CW
,
He
B
,
Wilson
EM
.
The putative androgen receptor: a form results from in vitro proteolysis
.
J Mol Endocrinol
.
2001
;
27
(
3
):
309
19
.
7.
Tepper
CG
,
Boucher
DL
,
Ryan
PE
,
Ma
AH
,
Xia
L
,
Lee
LF
, et al.
Characterization of a novel androgen receptor mutation in a relapsed CWR22 prostate cancer xenograft and cell line
.
Cancer Res
.
2002
;
62
(
22
):
6606
14
.
8.
Dehm
SM
,
Schmidt
LJ
,
Heemers
HV
,
Vessella
RL
,
Tindall
DJ
.
Splicing of a novel androgen receptor exon generates a constitutively active androgen receptor that mediates prostate cancer therapy resistance
.
Cancer Res
.
2008
;
68
(
13
):
5469
77
.
9.
Lu
C
,
Brown
LC
,
Antonarakis
ES
,
Armstrong
AJ
,
Luo
J
.
Androgen receptor variant-driven prostate cancer II: advances in laboratory investigations
.
Prostate Cancer Prostatic Dis
.
2020
.
10.
Hu
R
,
Dunn
TA
,
Wei
S
,
Isharwal
S
,
Veltri
RW
,
Humphreys
E
, et al.
Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer
.
Cancer Res
.
2009
;
69
(
1
):
16
22
.
11.
Guo
Z
,
Yang
X
,
Sun
F
,
Jiang
R
,
Linn
DE
,
Chen
H
, et al.
A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth
.
Cancer Res
.
2009
;
69
(
6
):
2305
13
.
12.
Austin
DC
,
Strand
DW
,
Love
HL
,
Franco
OE
,
Jang
A
,
Grabowska
MM
, et al.
NF-κB and androgen receptor variant expression correlate with human BPH progression
.
Prostate
.
2016
;
76
(
5
):
491
511
.
13.
Austin
DC
,
Strand
DW
,
Love
HL
,
Franco
OE
,
Grabowska
MM
,
Miller
NL
, et al.
NF-κB and androgen receptor variant 7 induce expression of SRD5A isoforms and confer 5ARI resistance
.
Prostate
.
2016
;
76
(
11
):
1004
18
.
14.
Hillebrand
AC
,
Pizzolato
LS
,
Neto
BS
,
Branchini
G
,
Brum
IS
.
Androgen receptor isoforms expression in benign prostatic hyperplasia and primary prostate cancer
.
PLoS One
.
2018
;
13
(
7
):
e0200613
.
15.
Ahrens-Fath
I
,
Politz
O
,
Geserick
C
,
Haendler
B
.
Androgen receptor function is modulated by the tissue-specific AR45 variant
.
FEBS J
.
2005
;
272
(
1
):
74
84
.
16.
Wang
F
,
Pan
J
,
Liu
Y
,
Meng
Q
,
Lv
P
,
Qu
F
, et al.
Alternative splicing of the androgen receptor in polycystic ovary syndrome
.
Proc Natl Acad Sci U S A
.
2015
;
112
(
15
):
4743
8
.
17.
Laurentino
SS
,
Pinto
PI
,
Tomás
J
,
Cavaco
JE
,
Sousa
M
,
Barros
A
, et al.
Identification of androgen receptor variants in testis from humans and other vertebrates
.
Andrologia
.
2013
;
45
(
3
):
187
94
.
18.
Ono
H
,
Saitsu
H
,
Horikawa
R
,
Nakashima
S
,
Ohkubo
Y
,
Yanagi
K
, et al.
Partial androgen insensitivity syndrome caused by a deep intronic mutation creating an alternative splice acceptor site of the AR gene
.
Sci Rep
.
2018
;
8
(
1
):
2287
.
19.
Brinkmann
AO
.
Molecular basis of androgen insensitivity
.
Mol Cell Endocrinol
.
2001
;
179
(
1–2
):
105
9
.
20.
Watson
PA
,
Chen
YF
,
Balbas
MD
,
Wongvipat
J
,
Socci
ND
,
Viale
A
, et al.
Constitutively active androgen receptor splice variants expressed in castration-resistant prostate cancer require full-length androgen receptor
.
Proc Natl Acad Sci U S A
.
2010
;
107
(
39
):
16759
65
.
21.
Li
Y
,
Alsagabi
M
,
Fan
D
,
Bova
GS
,
Tewfik
AH
,
Dehm
SM
.
Intragenic rearrangement and altered RNA splicing of the androgen receptor in a cell-based model of prostate cancer progression
.
Cancer Res
.
2011
;
71
(
6
):
2108
17
.
22.
Li
Y
,
Hwang
TH
,
Oseth
LA
,
Hauge
A
,
Vessella
RL
,
Schmechel
SC
, et al.
AR intragenic deletions linked to androgen receptor splice variant expression and activity in models of prostate cancer progression
.
Oncogene
.
2012
;
31
(
45
):
4759
67
.
23.
Li
Y
,
Chan
SC
,
Brand
LJ
,
Hwang
TH
,
Silverstein
KA
,
Dehm
SM
.
Androgen receptor splice variants mediate enzalutamide resistance in castration-resistant prostate cancer cell lines
.
Cancer Res
.
2013
;
73
(
2
):
483
9
.
24.
Henzler
C
,
Li
Y
,
Yang
R
,
McBride
T
,
Ho
Y
,
Sprenger
C
, et al.
Truncation and constitutive activation of the androgen receptor by diverse genomic rearrangements in prostate cancer
.
Nat Commun
.
2016
;
7
:
13668
.
25.
Van Etten
JL
,
Nyquist
M
,
Li
Y
,
Yang
R
,
Ho
Y
,
Johnson
R
, et al.
Targeting a single alternative polyadenylation site coordinately blocks expression of androgen receptor mRNA splice variants in prostate cancer
.
Cancer Res
.
2017
;
77
(
19
):
5228
35
.
26.
Liu
LL
,
Xie
N
,
Sun
S
,
Plymate
S
,
Mostaghel
E
,
Dong
X
.
Mechanisms of the androgen receptor splicing in prostate cancer cells
.
Oncogene
.
2014
;
33
(
24
):
3140
50
.
27.
Nadiminty
N
,
Tummala
R
,
Liu
C
,
Lou
W
,
Evans
CP
,
Gao
AC
.
NF-κB2/p52:c-Myc:hnRNPA1 pathway regulates expression of androgen receptor splice variants and enzalutamide sensitivity in prostate cancer
.
Mol Cancer Ther
.
2015
;
14
(
8
):
1884
95
.
28.
Tummala
R
,
Nadiminty
N
,
Lou
W
,
Evans
CP
,
Gao
AC
.
Lin28 induces resistance to anti-androgens via promotion of AR splice variant generation
.
Prostate
.
2016
;
76
(
5
):
445
55
.
29.
Shiota
M
,
Fujimoto
N
,
Imada
K
,
Yokomizo
A
,
Itsumi
M
,
Takeuchi
A
, et al.
Potential role for YB-1 in castration-resistant prostate cancer and resistance to enzalutamide through the androgen receptor V7
.
J Natl Cancer Inst
.
2016
;
108
(
7
):
djw005
.
30.
Heumann
A
,
Kaya
Ö
,
Burdelski
C
,
Hube-Magg
C
,
Kluth
M
,
Lang
DS
, et al.
Up regulation and nuclear translocation of Y-box binding protein 1 (YB-1) is linked to poor prognosis in ERG-negative prostate cancer
.
Sci Rep
.
2017
;
7
(
1
):
2056
.
31.
Nakata
D
,
Nakao
S
,
Nakayama
K
,
Araki
S
,
Nakayama
Y
,
Aparicio
S
, et al.
The RNA helicase DDX39B and its paralog DDX39A regulate androgen receptor splice variant AR-V7 generation
.
Biochem Biophys Res Commun
.
2017
;
483
(
1
):
271
6
.
32.
Armenia
J
,
Wankowicz
SAM
,
Liu
D
,
Gao
J
,
Kundra
R
,
Reznik
E
, et al.
The long tail of oncogenic drivers in prostate cancer
.
Nat Genet
.
2018
;
50
(
5
):
645
51
.
33.
Je
EM
,
Yoo
NJ
,
Kim
YJ
,
Kim
MS
,
Lee
SH
.
Mutational analysis of splicing machinery genes SF3B1, U2AF1 and SRSF2 in myelodysplasia and other common tumors
.
Int J Cancer
.
2013
;
133
(
1
):
260
5
.
34.
Kawamura
N
,
Nimura
K
,
Saga
K
,
Ishibashi
A
,
Kitamura
K
,
Nagano
H
, et al.
SF3B2-Mediated RNA splicing drives human prostate cancer progression
.
Cancer Res
.
2019
;
79
(
20
):
5204
17
.
35.
Jiménez-Vacas
JM
,
Herrero-Aguayo
V
,
Montero-Hidalgo
AJ
,
Gómez-Gómez
E
,
Fuentes-Fayos
AC
,
León-González
AJ
, et al.
Dysregulation of the splicing machinery is directly associated to aggressiveness of prostate cancer
.
EBioMedicine
.
2020
;
51
:
102547
.
36.
Yu
Z
,
Chen
S
,
Sowalsky
AG
,
Voznesensky
OS
,
Mostaghel
EA
,
Nelson
PS
, et al.
Rapid induction of androgen receptor splice variants by androgen deprivation in prostate cancer
.
Clin Cancer Res
.
2014
;
20
(
6
):
1590
600
.
37.
Li
Y
,
Xie
N
,
Gleave
ME
,
Rennie
PS
,
Dong
X
.
AR-v7 protein expression is regulated by protein kinase and phosphatase
.
Oncotarget
.
2015
;
6
(
32
):
33743
54
.
38.
Nadiminty
N
,
Tummala
R
,
Liu
C
,
Yang
J
,
Lou
W
,
Evans
CP
, et al.
NF-κB2/p52 induces resistance to enzalutamide in prostate cancer: role of androgen receptor and its variants
.
Mol Cancer Ther
.
2013
;
12
(
8
):
1629
37
.
39.
Jin
R
,
Yamashita
H
,
Yu
X
,
Wang
J
,
Franco
OE
,
Wang
Y
, et al.
Inhibition of NF-kappa B signaling restores responsiveness of castrate-resistant prostate cancer cells to anti-androgen treatment by decreasing androgen receptor-variant expression
.
Oncogene
.
2015
;
34
(
28
):
3700
10
.
40.
Shiota
M
,
Itsumi
M
,
Takeuchi
A
,
Imada
K
,
Yokomizo
A
,
Kuruma
H
, et al.
Crosstalk between epithelial-mesenchymal transition and castration resistance mediated by Twist1/AR signaling in prostate cancer
.
Endocr Relat Cancer
.
2015
;
22
(
6
):
889
900
.
41.
Rothermundt
C
,
Hayoz
S
,
Templeton
AJ
,
Winterhalder
R
,
Strebel
RT
,
Bärtschi
D
, et al.
Metformin in chemotherapy-naive castration-resistant prostate cancer: a multicenter phase 2 trial (SAKK 08/09)
.
Eur Urol
.
2014
;
66
(
3
):
468
74
.
42.
Zengerling
F
,
Azoitei
A
,
Herweg
A
,
Jentzmik
F
,
Cronauer
MV
.
Inhibition of IGF-1R diminishes transcriptional activity of the androgen receptor and its constitutively active, C-terminally truncated counterparts Q640X and AR-V7
.
World J Urol
.
2016
;
34
(
5
):
633
9
.
43.
Shi
XB
,
Ma
AH
,
Xue
L
,
Li
M
,
Nguyen
HG
,
Yang
JC
, et al.
miR-124 and androgen receptor signaling inhibitors repress prostate cancer growth by downregulating androgen receptor splice variants, EZH2, and Src
.
Cancer Res
.
2015
;
75
(
24
):
5309
17
.
44.
Kumar
B
,
Khaleghzadegan
S
,
Mears
B
,
Hatano
K
,
Kudrolli
TA
,
Chowdhury
WH
, et al.
Identification of miR-30b-3p and miR-30d-5p as direct regulators of androgen receptor signaling in prostate cancer by complementary functional microRNA library screening
.
Oncotarget
.
2016
;
7
(
45
):
72593
607
.
45.
Naiki-Ito
A
,
Naiki
T
,
Kato
H
,
Iida
K
,
Etani
T
,
Nagayasu
Y
, et al.
Recruitment of miR-8080 by luteolin inhibits androgen receptor splice variant 7 expression in castration-resistant prostate cancer
.
Carcinogenesis
.
2020 Aug 12
;
41
(
8
):
1145
57
.
46.
Zhang
Z
,
Zhou
N
,
Huang
J
,
Ho
TT
,
Zhu
Z
,
Qiu
Z
, et al.
Regulation of androgen receptor splice variant AR3 by PCGEM1
.
Oncotarget
.
2016
;
7
(
13
):
15481
91
.
47.
Wang
R
,
Sun
Y
,
Li
L
,
Niu
Y
,
Lin
W
,
Lin
C
, et al.
Preclinical study using Malat1 small interfering RNA or androgen receptor splicing variant 7 degradation enhancer ASC-J9
.
Eur Urol
.
2017
;
72
(
5
):
835
44
.
48.
Greene
J
,
Baird
AM
,
Casey
O
,
Brady
L
,
Blackshields
G
,
Lim
M
, et al.
Circular RNAs are differentially expressed in prostate cancer and are potentially associated with resistance to enzalutamide
.
Sci Rep
.
2019
;
9
(
1
):
10739
.
49.
Jiang
H
,
Lv
DJ
,
Song
XL
,
Wang
C
,
Yu
YZ
,
Zhao
SC
.
Upregulated circZMIZ1 promotes the proliferation of prostate cancer cells and is a valuable marker in plasma
.
Neoplasma
.
2020
;
67
(
1
):
68
77
.
50.
Duan
L
,
Chen
Z
,
Lu
J
,
Liang
Y
,
Wang
M
,
Roggero
CM
, et al.
Histone lysine demethylase KDM4B regulates the alternative splicing of the androgen receptor in response to androgen deprivation
.
Nucleic Acids Res
.
2019
;
47
(
22
):
11623
36
.
51.
van der Horst
EH
,
Degenhardt
YY
,
Strelow
A
,
Slavin
A
,
Chinn
L
,
Orf
J
, et al.
Metastatic properties and genomic amplification of the tyrosine kinase gene ACK1
.
Proc Natl Acad Sci U S A
.
2005
;
102
(
44
):
15901
6
.
52.
Mahajan
K
,
Malla
P
,
Lawrence
HR
,
Chen
Z
,
Kumar-Sinha
C
,
Malik
R
, et al.
ACK1/TNK2 regulates histone H4 Tyr88-phosphorylation and AR gene expression in castration-resistant prostate cancer
.
Cancer Cell
.
2017
;
31
(
6
):
790
803 e8
.
53.
Regufe da Mota
S
,
Bailey
S
,
Strivens
RA
,
Hayden
AL
,
Douglas
LR
,
Duriez
PJ
, et al.
LSD1 inhibition attenuates androgen receptor V7 splice variant activation in castration resistant prostate cancer models
.
Cancer Cell Int
.
2018
;
18
:
71
.
54.
Fan
L
,
Zhang
F
,
Xu
S
,
Cui
X
,
Hussain
A
,
Fazli
L
, et al.
Histone demethylase JMJD1A promotes alternative splicing of AR variant 7 (AR-V7) in prostate cancer cells
.
Proc Natl Acad Sci U S A
.
2018
;
115
(
20
):
E4584
93
.
55.
Cutress
ML
,
Whitaker
HC
,
Mills
IG
,
Stewart
M
,
Neal
DE
.
Structural basis for the nuclear import of the human androgen receptor
.
J Cell Sci
.
2008
;
121
(
Pt 7
):
957
68
.
56.
Zhang
G
,
Liu
X
,
Li
J
,
Ledet
E
,
Alvarez
X
,
Qi
Y
, et al.
Androgen receptor splice variants circumvent AR blockade by microtubule-targeting agents
.
Oncotarget
.
2015
;
6
(
27
):
23358
71
.
57.
Chan
SC
,
Li
Y
,
Dehm
SM
.
Androgen receptor splice variants activate androgen receptor target genes and support aberrant prostate cancer cell growth independent of canonical androgen receptor nuclear localization signal
.
J Biol Chem
.
2012
;
287
(
23
):
19736
49
.
58.
Xu
D
,
Zhan
Y
,
Qi
Y
,
Cao
B
,
Bai
S
,
Xu
W
, et al.
Androgen receptor splice variants dimerize to transactivate target genes
.
Cancer Res
.
2015
;
75
(
17
):
3663
71
.
59.
Cato
L
,
de Tribolet-Hardy
J
,
Lee
I
,
Rottenberg
JT
,
Coleman
I
,
Melchers
D
, et al.
ARv7 represses tumor-suppressor genes in castration-resistant prostate cancer
.
Cancer Cell
.
2019
;
35
(
3
):
401
13.e6
.
60.
Lin
HK
,
Yeh
S
,
Kang
HY
,
Chang
C
.
Akt suppresses androgen-induced apoptosis by phosphorylating and inhibiting androgen receptor
.
Proc Natl Acad Sci U S A
.
2001
;
98
(
13
):
7200
5
.
61.
Chen
S
,
Kesler
CT
,
Paschal
BM
,
Balk
SP
.
Androgen receptor phosphorylation and activity are regulated by an association with protein phosphatase 1
.
J Biol Chem
.
2009
;
284
(
38
):
25576
84
.
62.
Liu
C
,
Lou
W
,
Yang
JC
,
Liu
L
,
Armstrong
CM
,
Lombard
AP
, et al.
Proteostasis by STUB1/HSP70 complex controls sensitivity to androgen receptor targeted therapy in advanced prostate cancer
.
Nat Commun
.
2018
;
9
(
1
):
4700
.
63.
Liu
C
,
Yang
JC
,
Armstrong
CM
,
Lou
W
,
Liu
L
,
Qiu
X
, et al.
AKR1C3 promotes AR-V7 protein stabilization and confers resistance to AR-targeted therapies in advanced prostate cancer
.
Mol Cancer Ther
.
2019
;
18
(
10
):
1875
86
.
64.
Peacock
SO
,
Fahrenholtz
CD
,
Burnstein
KL
.
Vav3 enhances androgen receptor splice variant activity and is critical for castration-resistant prostate cancer growth and survival
.
Mol Endocrinol
.
2012
;
26
(
12
):
1967
79
.
65.
Magani
F
,
Peacock
SO
,
Rice
MA
,
Martinez
MJ
,
Greene
AM
,
Magani
PS
, et al.
Targeting AR variant-coactivator interactions to exploit prostate cancer vulnerabilities
.
Mol Cancer Res
.
2017
;
15
(
11
):
1469
80
.
66.
McGrath
MJ
,
Binge
LC
,
Sriratana
A
,
Wang
H
,
Robinson
PA
,
Pook
D
, et al.
Regulation of the transcriptional coactivator FHL2 licenses activation of the androgen receptor in castrate-resistant prostate cancer
.
Cancer Res
.
2013
;
73
(
16
):
5066
79
.
67.
Stockley
J
,
Markert
E
,
Zhou
Y
,
Robson
CN
,
Elliott
DJ
,
Lindberg
J
, et al.
The RNA-binding protein Sam68 regulates expression and transcription function of the androgen receptor splice variant AR-V7
.
Sci Rep
.
2015
;
5
:
13426
.
68.
Sarwar
M
,
Semenas
J
,
Miftakhova
R
,
Simoulis
A
,
Robinson
B
,
Gjorloff Wingren
A
, et al.
Targeted suppression of AR-V7 using PIP5K1alpha inhibitor overcomes enzalutamide resistance in prostate cancer cells
.
Oncotarget
.
2016
;
7
(
39
):
63065
81
.
69.
Jones
D
,
Noble
M
,
Wedge
SR
,
Robson
CN
,
Gaughan
L
.
Aurora a regulates expression of AR-V7 in models of castrate resistant prostate cancer
.
Sci Rep
.
2017
;
7
:
40957
.
70.
Moon
SJ
,
Jeong
BC
,
Kim
HJ
,
Lim
JE
,
Kwon
GY
,
Kim
JH
.
DBC1 promotes castration-resistant prostate cancer by positively regulating DNA binding and stability of AR-V7
.
Oncogene
.
2018
;
37
(
10
):
1326
39
.
71.
Bohrer
LR
,
Liu
P
,
Zhong
J
,
Pan
Y
,
Angstman
J
,
Brand
LJ
, et al.
FOXO1 binds to the TAU5 motif and inhibits constitutively active androgen receptor splice variants
.
Prostate
.
2013
;
73
(
10
):
1017
27
.
72.
Mediwala
SN
,
Sun
H
,
Szafran
AT
,
Hartig
SM
,
Sonpavde
G
,
Hayes
TG
, et al.
The activity of the androgen receptor variant AR-V7 is regulated by FOXO1 in a PTEN-PI3K-AKT-dependent way
.
Prostate
.
2013
;
73
(
3
):
267
77
.
73.
Sahu
B
,
Laakso
M
,
Ovaska
K
,
Mirtti
T
,
Lundin
J
,
Rannikko
A
, et al.
Dual role of FoxA1 in androgen receptor binding to chromatin, androgen signalling and prostate cancer
.
EMBO J
.
2011
;
30
(
19
):
3962
76
.
74.
Krause
WC
,
Shafi
AA
,
Nakka
M
,
Weigel
NL
.
Androgen receptor and its splice variant, AR-V7, differentially regulate FOXA1 sensitive genes in LNCaP prostate cancer cells
.
Int J Biochem Cell Biol
.
2014
;
54
:
49
59
.
75.
Cai
L
,
Tsai
YH
,
Wang
P
,
Wang
J
,
Li
D
,
Fan
H
, et al.
ZFX mediates non-canonical oncogenic functions of the androgen receptor splice variant 7 in castrate-resistant prostate cancer
.
Mol Cell
.
2018
;
72
(
2
):
341
54 e6
.
76.
Li
N
,
Chen
M
,
Truong
S
,
Yan
C
,
Buttyan
R
.
Determinants of Gli2 co-activation of wildtype and naturally truncated androgen receptors
.
Prostate
.
2014
;
74
(
14
):
1400
10
.
77.
Li
Y
,
Zhang
DJ
,
Qiu
Y
,
Kido
T
,
Lau
YC
.
The Y-located proto-oncogene TSPY exacerbates and its X-homologue TSPX inhibits transactivation functions of androgen receptor and its constitutively active variants
.
Hum Mol Genet
.
2017
;
26
(
5
):
901
12
.
78.
Chen
Z
,
Wu
D
,
Thomas-Ahner
JM
,
Lu
C
,
Zhao
P
,
Zhang
Q
, et al.
Diverse AR-V7 cistromes in castration-resistant prostate cancer are governed by HoxB13
.
Proc Natl Acad Sci U S A
.
2018
;
115
(
26
):
6810
5
.
79.
Cai
C
,
He
HH
,
Chen
S
,
Coleman
I
,
Wang
H
,
Fang
Z
, et al.
Androgen receptor gene expression in prostate cancer is directly suppressed by the androgen receptor through recruitment of lysine-specific demethylase 1
.
Cancer Cell
.
2011
;
20
(
4
):
457
71
.
80.
Cao
B
,
Qi
Y
,
Zhang
G
,
Xu
D
,
Zhan
Y
,
Alvarez
X
, et al.
Androgen receptor splice variants activating the full-length receptor in mediating resistance to androgen-directed therapy
.
Oncotarget
.
2014
;
5
(
6
):
1646
56
.
81.
Hu
R
,
Isaacs
WB
,
Luo
J
.
A snapshot of the expression signature of androgen receptor splicing variants and their distinctive transcriptional activities
.
Prostate
.
2011
;
71
(
15
):
1656
67
.
82.
Mashima
T
,
Okabe
S
,
Seimiya
H
.
Pharmacological targeting of constitutively active truncated androgen receptor by nigericin and suppression of hormone-refractory prostate cancer cell growth
.
Mol Pharmacol
.
2010
;
78
(
5
):
846
54
.
83.
Hu
R
,
Lu
C
,
Mostaghel
EA
,
Yegnasubramanian
S
,
Gurel
M
,
Tannahill
C
, et al.
Distinct transcriptional programs mediated by the ligand-dependent full-length androgen receptor and its splice variants in castration-resistant prostate cancer
.
Cancer Res
.
2012
;
72
(
14
):
3457
62
.
84.
van Royen
ME
,
van Cappellen
WA
,
de Vos
C
,
Houtsmuller
AB
,
Trapman
J
.
Stepwise androgen receptor dimerization
.
J Cell Sci
.
2012
;
125
(
Pt 8
):
1970
9
.
85.
Sun
F
,
Chen
HG
,
Li
W
,
Yang
X
,
Wang
X
,
Jiang
R
, et al.
Androgen receptor splice variant AR3 promotes prostate cancer via modulating expression of autocrine/paracrine factors
.
J Biol Chem
.
2014
;
289
(
3
):
1529
39
.
86.
Shafi
AA
,
Putluri
V
,
Arnold
JM
,
Tsouko
E
,
Maity
S
,
Roberts
JM
, et al.
Differential regulation of metabolic pathways by androgen receptor (AR) and its constitutively active splice variant, AR-V7, in prostate cancer cells
.
Oncotarget
.
2015
;
6
(
31
):
31997
2012
.
87.
Liu
VWS
,
Yau
WL
,
Tam
CW
,
Yao
KM
,
Shiu
SYW
.
Melatonin inhibits androgen receptor splice variant-7 (AR-V7)-induced nuclear factor-kappa B (NF-kappaB) activation and NF-kappaB activator-induced AR-V7 expression in prostate cancer cells: potential implications for the use of melatonin in castration-resistant prostate cancer (CRPC) therapy
.
Int J Mol Sci
.
2017
;
18
(
6
):
1130
.
88.
Cottard
F
,
Asmane
I
,
Erdmann
E
,
Bergerat
JP
,
Kurtz
JE
,
Ceraline
J
.
Constitutively active androgen receptor variants upregulate expression of mesenchymal markers in prostate cancer cells
.
PLoS One
.
2013
;
8
(
5
):
e63466
.
89.
Kong
D
,
Sethi
S
,
Li
Y
,
Chen
W
,
Sakr
WA
,
Heath
E
, et al.
Androgen receptor splice variants contribute to prostate cancer aggressiveness through induction of EMT and expression of stem cell marker genes
.
Prostate
.
2015
;
75
(
2
):
161
74
.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.