Urolithiasis is one of the most common urologic diseases in industrialized societies. More than 80% of renal stones are composed of calcium oxalate, and small changes in urinary oxalate concentrations affect the risk of stone formation. Elucidation of the source of oxalate and its mechanism of transport is crucial for understanding the etiology of urolithiasis. Sources of oxalate can be both endogenous and exogenous. With regard to oxalate transport, tests were carried out to prove the function of solute-linked carrier 4 (SLC4) and SLC26. The molecular mechanism of urolithiasis caused by SLC4 and SLC26 is still unclear. The growing number of studies on the molecular physiology of SLC4 and SLC26, together with knockout genetic mouse model experiments, suggest that SLC4 and SLC26 may be a contributing element to urolithiasis. This review summarizes recent research on the sources of oxalate and characterization of the oxalate transport ionic exchangers SLC4 and SLC26, with an emphasis on different physiological defects in knockout mouse models including kidney stone formation. Furthermore, SLC4 and SLC26 exchangers provide new insight into urolithiasis and may be a novel therapeutic target for modification of urinary oxalate excretion.

1.
Li
YH
,
Zhang
J
,
Liu
HY
.
Curcumin ameliorates glyoxylate-induced calcium oxalate deposition and renal injuries in mice
.
Phytomedicine, Phymed
;
2019
. p.
152861
.
2.
Holmes
RP
,
Goodman
HO
,
Assimos
DG
.
Contribution of dietary oxalate to urinary oxalate excretion
.
Kidney Int
.
2001
Jan
;
59
(
1
):
270
6
.
[PubMed]
0085-2538
3.
Ortiz
YV
,
Arestin
CC
,
Medina
PG
,
Torres
PP
.
Urolithiasis: population analysis and composition
.
Clin Chim Acta
.
2019
;
493
:
S460
92
. 0009-8981
4.
Liu
Y
,
Chen
YT
.
Epidemiology of urolithiasis in Asia.
Asian Journal of Urology.
2018
; S2214-3882(18)30072-9
5.
Penniston
KL
,
McLaren
ID
,
Greenlee
RT
,
Nakada
SY
.
Urolithiasis in a rural Wisconsin population from 1992 to 2008: narrowing of the male-to-female ratio
.
J Urol
.
2011
May
;
185
(
5
):
1731
6
.
[PubMed]
0022-5347
6.
Tsujihata
M
.
Mechanism of calcium oxalate renal stone formation and renal tubular cell injury
.
Int J Urol
.
2008
Feb
;
15
(
2
):
115
20
.
[PubMed]
0919-8172
7.
Ivanovski
O
,
Drüeke
TB
.
A new era in the treatment of calcium oxalate stones?
Kidney Int
.
2013
Jun
;
83
(
6
):
998
1000
.
[PubMed]
0085-2538
8.
Schubert
G
.
Stone analysis
.
Urol Res
.
2006
Apr
;
34
(
2
):
146
50
.
[PubMed]
0300-5623
9.
Holmes
RP
,
Assimos
DG
.
The impact of dietary oxalate on kidney stone formation
.
Urol Res
.
2004
Oct
;
32
(
5
):
311
6
.
[PubMed]
0300-5623
10.
Holmes
RP
,
Ambrosius
WT
,
Assimos
DG
.
Dietary oxalate loads and renal oxalate handling
.
J Urol
.
2005
Sep
;
174
(
3
):
943
7
.
[PubMed]
0022-5347
11.
Hatch
M
,
Freel
RW
.
The roles and mechanisms of intestinal oxalate transport in oxalate homeostasis
.
Semin Nephrol
.
2008
Mar
;
28
(
2
):
143
51
.
[PubMed]
0270-9295
12.
Worcester
EM
.
Stones from bowel disease
.
Endocrinol Metab Clin North Am
.
2002
Dec
;
31
(
4
):
979
99
.
[PubMed]
0889-8529
13.
Lieske
JC
,
Kumar
R
,
Collazo-Clavell
ML
.
Nephrolithiasis after bariatric surgery for obesity
.
Semin Nephrol
.
2008
Mar
;
28
(
2
):
163
73
.
[PubMed]
0270-9295
14.
Kleta
R
.
A key stone cop regulates oxalate homeostasis
.
Nat Genet
.
2006
Apr
;
38
(
4
):
403
4
.
[PubMed]
1061-4036
15.
Jennings
ML
,
Adame
MF
.
Characterization of oxalate transport by the human erythrocyte band 3 protein
.
J Gen Physiol
.
1996
Jan
;
107
(
1
):
145
59
.
[PubMed]
0022-1295
16.
Alper
SL
.
Molecular physiology of SLC4 anion exchangers
.
Exp Physiol
.
2006
Jan
;
91
(
1
):
153
61
.
[PubMed]
0958-0670
17.
Waldegger
S
,
Moschen
I
,
Ramirez
A
,
Smith
RJ
,
Ayadi
H
,
Lang
F
, et al.
Cloning and characterization of SLC26A6, a novel member of the solute carrier 26 gene family
.
Genomics
.
2001
Feb
;
72
(
1
):
43
50
.
[PubMed]
0888-7543
18.
Lohi
H
,
Kujala
M
,
Kerkelä
E
,
Saarialho-Kere
U
,
Kestilä
M
,
Kere
J
.
Mapping of five new putative anion transporter genes in human and characterization of SLC26A6, a candidate gene for pancreatic anion exchanger
.
Genomics
.
2000
Nov
;
70
(
1
):
102
12
.
[PubMed]
0888-7543
19.
Knauf
F
,
Yang
CL
,
Thomson
RB
,
Mentone
SA
,
Giebisch
G
,
Aronson
PS
.
Identification of a chloride-formate exchanger expressed on the brush border membrane of renal proximal tubule cells
.
Proc Natl Acad Sci USA
.
2001
Jul
;
98
(
16
):
9425
30
.
[PubMed]
0027-8424
20.
Wang
Z
,
Petrovic
S
,
Mann
E
,
Soleimani
M
.
Identification of an apical Cl(-)/HCO3(-) exchanger in the small intestine
.
Am J Physiol Gastrointest Liver Physiol
.
2002
Mar
;
282
(
3
):
G573
9
.
[PubMed]
0193-1857
21.
Mukaibo
T
,
Munemasa
T
,
George
AT
,
Tran
DT
,
Gao
X
,
Herche
JL
, et al.
The apical anion exchanger Slc26a6 promotes oxalate secretion by murine submandibular gland acinar cells
.
J Biol Chem
.
2018
Apr
;
293
(
17
):
6259
68
.
[PubMed]
0021-9258
22.
Jiang
Z
,
Asplin
JR
,
Evan
AP
,
Rajendran
VM
,
Velazquez
H
,
Nottoli
TP
, et al.
Calcium oxalate urolithiasis in mice lacking anion transporter Slc26a6
.
Nat Genet
.
2006
Apr
;
38
(
4
):
474
8
.
[PubMed]
1061-4036
23.
Alper
SL
,
Sharma
AK
.
The SLC26 gene family of anion transporters and channels
.
Mol Aspects Med
.
2013
Apr-Jun
;
34
(
2-3
):
494
515
.
[PubMed]
0098-2997
24.
Assimos
DG
,
Holmes
RP
.
Role of diet in the therapy of urolithiasis
.
Urol Clin North Am
.
2000
May
;
27
(
2
):
255
68
.
[PubMed]
0094-0143
25.
Fargue
S
,
Knight
J
,
Holmes
RP
,
Rumsby
G
,
Danpure
CJ
.
Effects of alanine:glyoxylate aminotransferase variants and pyridoxine sensitivity on oxalate metabolism in a cell-based cytotoxicity assay
.
Biochim Biophys Acta
.
2016
Jun
;
1862
(
6
):
1055
62
.
[PubMed]
0006-3002
26.
Chai
W
,
Liebman
M
,
Kynast-Gales
S
,
Massey
L
.
Oxalate absorption and endogenous oxalate synthesis from ascorbate in calcium oxalate stone formers and non-stone formers
.
Am J Kidney Dis
.
2004
Dec
;
44
(
6
):
1060
9
.
[PubMed]
0272-6386
27.
Massey
LK
,
Liebman
M
,
Kynast-Gales
SA
.
Ascorbate increases human oxaluria and kidney stone risk
.
J Nutr
.
2005
Jul
;
135
(
7
):
1673
7
.
[PubMed]
0022-3166
28.
Taylor
EN
,
Stampfer
MJ
,
Curhan
GC
.
Dietary factors and the risk of incident kidney stones in men: new insights after 14 years of follow-up
.
J Am Soc Nephrol
.
2004
Dec
;
15
(
12
):
3225
32
.
[PubMed]
1046-6673
29.
Auer
BL
,
Auer
D
,
Rodgers
AL
.
The effect of ascorbic acid ingestion on the biochemical and physicochemical risk factors associated with calcium oxalate kidney stone formation
.
Clin Chem Lab Med
.
1998
Mar
;
36
(
3
):
143
7
.
[PubMed]
1434-6621
30.
Hatch
M
,
Mulgrew
S
,
Bourke
E
,
Keogh
B
,
Costello
J
.
Effect of megadoses of ascorbic acid on serum and urinary oxalate
.
Eur Urol
.
1980
;
6
(
3
):
166
9
.
[PubMed]
0302-2838
31.
Auer
BL
,
Auer
D
,
Rodgers
AL
.
Relative hyperoxaluria, crystalluria and haematuria after megadose ingestion of vitamin C
.
Eur J Clin Invest
.
1998
Sep
;
28
(
9
):
695
700
.
[PubMed]
0014-2972
32.
Baker
PR
,
Cramer
SD
,
Kennedy
M
,
Assimos
DG
,
Holmes
RP
.
Glycolate and glyoxylate metabolism in HepG2 cells
.
Am J Physiol Cell Physiol
.
2004
Nov
;
287
(
5
):
C1359
65
.
[PubMed]
0363-6143
33.
Behnam
JT
,
Williams
EL
,
Brink
S
,
Rumsby
G
,
Danpure
CJ
.
Reconstruction of human hepatocyte glyoxylate metabolic pathways in stably transformed Chinese-hamster ovary cells
.
Biochem J
.
2006
Mar
;
394
(
Pt 2
):
409
16
.
[PubMed]
0264-6021
34.
Marengo
SR
,
Romani
AM
.
Oxalate in renal stone disease: the terminal metabolite that just won’t go away
.
Nat Clin Pract Nephrol
.
2008
Jul
;
4
(
7
):
368
77
.
[PubMed]
1745-8323
35.
Knight
J
,
Jiang
J
,
Assimos
DG
,
Holmes
RP
.
Hydroxyproline ingestion and urinary oxalate and glycolate excretion
.
Kidney Int
.
2006
Dec
;
70
(
11
):
1929
34
.
[PubMed]
0085-2538
36.
Robijn
S
,
Hoppe
B
,
Vervaet
BA
,
D’Haese
PC
,
Verhulst
A
.
Hyperoxaluria: a gut-kidney axis?
Kidney Int
.
2011
Dec
;
80
(
11
):
1146
58
.
[PubMed]
0085-2538
37.
Hoppe
B
,
Beck
BB
,
Milliner
DS
.
The primary hyperoxalurias
.
Kidney Int
.
2009
Jun
;
75
(
12
):
1264
71
.
[PubMed]
0085-2538
38.
Danpure
CJ
.
Molecular etiology of primary hyperoxaluria type 1: new directions for treatment
.
Am J Nephrol
.
2005
May-Jun
;
25
(
3
):
303
10
.
[PubMed]
0250-8095
39.
Wood
DK
,
Holmes
RP
,
Erbe
D
.
Reduction in urinary oxalate excretion in mouse models of primary hyperoxaluria by RNA interference inhibition of liver lactate dehydrogenase activity.
Biochimica et Biophysica Acta- Molecular Basis of Disease,
2019
; S0925-4439(19)30145-0
40.
Bobrowski
AE
,
Langman
CB
.
The primary hyperoxalurias
.
Semin Nephrol
.
2008
Mar
;
28
(
2
):
152
62
.
[PubMed]
0270-9295
41.
Leumann
E
,
Hoppe
B
.
The primary hyperoxalurias
.
J Am Soc Nephrol
.
2001
Sep
;
12
(
9
):
1986
93
.
[PubMed]
1046-6673
42.
De Broe
ME
,
Porter
GA
. Chapter 32: Oxalate. In:
De Broe
ME
,
Porter
GA
, editors
.
Clinical Nephrotoxins: Renal Injury from Drugs and Chemicals
. 3rd ed.
New York, NY, USA
:
Springer
;
2008
. pp.
749
56
.
43.
Phang
JM
,
Hu
CA
,
Valle
D
. Disorders in proline and hydroxyproline metabolism, in: C. Scriver, A. Beaudet W. Valle D, Childs B (Eds.). The Metabolic and Molecular Bases of Inherited Disease, 8th ed, McGraw-Hill, New York.
2001
;1821–1838.
44.
Cochat
P
,
Rumsby
G
.
Primary hyperoxaluria
.
N Engl J Med
.
2013
Aug
;
369
(
7
):
649
58
.
[PubMed]
0028-4793
45.
Siener
R
,
Bade
DJ
,
Hesse
A
,
Hoppe
B
. Dietary hyperoxaluria is not reduced by treatment with Lactic acid bacteria, J. Transl. Med.
2013
;11:306e313.
46.
Siener
R
,
Schade
N
,
Nicolay
C
. The efficacy of dietary intervention on urinary risk factors for stone formation in recurrent calcium oxalate stone patients, J. Urology.
2005
;173:1601e1605.
47.
Siener
R
, H€onow R, Voss S, Seidler A, Hesse A. Oxalate content of cereals and cereal products, J. Agric. Food Chem.
2006
;54:3008e3011.
48.
Taylor
EN
,
Curhan
GC
. Oxalate intake and the risk for nephrolithiasis, J. Am. Soc. Nephrol.
2007
; 18,:2198e2204.
49.
Duncan
SH
,
Richardson
AJ
,
Kaul
P
,
Holmes
RP.
,
Allisonand
MJ
,
Stewart
CS.O.
Formigenes and its potential role in human health, Appl. Environ. Microbiol.
2002
;68:3841e3847.
50.
Borghi
L
,
Schianchi
T
,
Meschi
T
,
Guerra
A
,
Allegri
F
,
Maggiore
U
, et al.
Comparison of two diets for the prevention of recurrent stones in idiopathic hypercalciuria
.
N Engl J Med
.
2002
Jan
;
346
(
2
):
77
84
.
[PubMed]
0028-4793
51.
Domrongkitchaiporn
S
,
Sopassathit
W
,
Stitchantrakul
W
,
Prapaipanich
S
,
Ingsathit
A
,
Rajatanavin
R
.
Schedule of taking calcium supplement and the risk of nephrolithiasis
.
Kidney Int
.
2004
May
;
65
(
5
):
1835
41
.
[PubMed]
0085-2538
52.
de O G Mendonça
C
,
Martini
LA
,
Baxmann
AC
,
Nishiura
JL
,
Cuppari
L
,
Sigulem
DM
, et al.
Effects of an oxalate load on urinary oxalate excretion in calcium stone formers
.
J Ren Nutr
.
2003
Jan
;
13
(
1
):
39
46
.
[PubMed]
1051-2276
53.
Liebman
M
,
Costa
G
.
Effects of calcium and magnesium on urinary oxalate excretion after oxalate loads
.
J Urol
.
2000
May
;
163
(
5
):
1565
9
.
[PubMed]
0022-5347
54.
Hornberger
B
,
Bollner
MR
.
Kidney Stones
.
Physician Assist Clin
.
2018
;
3
(
1
):
37
54
.
55.
Canales
BK
,
Anderson
L
,
Higgins
L
,
Slaton
J
,
Roberts
KP
,
Liu
N
, et al.
Second prize: comprehensive proteomic analysis of human calcium oxalate monohydrate kidney stone matrix
.
J Endourol
.
2008
Jun
;
22
(
6
):
1161
7
.
[PubMed]
0892-7790
56.
Mendonca
FS
,
Pedreira
RS
.
Hydroxyproline and starch consumption and urinary supersaturation with calcium oxalate in cats.
Animal Feed Science and Technology.
2018
; S0377-8401(18)30150-0
57.
Nazzal
L
,
Puri
S
,
Goldfarb
DS
. Enteric hyperoxaluria: an important cause of end-stage kidney disease, Nephrol. Dial.Transpl.
2016
; 31:375e382,
58.
Dobbins
JW
,
Binder
HJ
.
Effect of bile salts and fatty acids on the colonic absorption of oxalate
.
Gastroenterology
.
1976
Jun
;
70
(
6
):
1096
100
.
[PubMed]
0016-5085
59.
Sinha
MK.
,
Collazo-Clavell
ML
,
Rule
A
,
Milliner
DS.
Hyperoxaluric nephrolithiasis is a complication of Roux-en-Y gastric bypass surgery, Kidney Int.
2007
;72:100e107,
60.
Asplin
JR.
,
Coe
FL.
Hyperoxaluria in kidney stone formers treated with modern bariatric surgery. J. Urol.
2007
; 177:565e569
61.
Durrani
O
,
Morrisroe
S
,
Jackman
S
,
Averch
T
. Analysis of stone disease in morbidly obese patients undergoing gastric bypass surgery. J Endourol.
2006
;20:749e752,
62.
Requarth
JA
,
Burchard
KW
,
Colacchio
TA
,
Stukel
TA
,
Mott
LA
,
Greenberg
ER
, et al.
Long-term morbidity following jejunoileal bypass. The continuing potential need for surgical reversal
.
Arch Surg
.
1995
Mar
;
130
(
3
):
318
25
.
[PubMed]
0004-0010
63.
Kaye
MC
,
Streem
SB
,
Hall
PM
.
Enteric hyperoxaluria associated with external biliary drainage
.
J Urol
.
1994
Feb
;
151
(
2
):
396
7
.
[PubMed]
0022-5347
64.
Duffey
BG
,
Alanee
S
. Hyperoxaluria Is a Long-Term Consequence of Roux-en-Y Gastric Bypass: A 2-Year Prospective Longitudinal Study. Elsevier Inc;
2010
;211,1
65.
Mole
DR
,
Tomson
CR
,
Mortensen
N
,
Winearls
CG
.
Renal complications of jejuno-ileal bypass for obesity
.
QJM
.
2001
Feb
;
94
(
2
):
69
77
.
[PubMed]
1460-2725
66.
Hokama
S
,
Honma
Y
,
Toma
C
,
Ogawa
Y
.
Oxalate-degrading Enterococcus faecalis
.
Microbiol Immunol
.
2000
;
44
(
4
):
235
40
.
[PubMed]
0385-5600
67.
Campieri
C
,
Campieri
M
,
Bertuzzi
V
,
Swennen
E
,
Matteuzzi
D
,
Stefoni
S
, et al.
Reduction of oxaluria after an oral course of lactic acid bacteria at high concentration
.
Kidney Int
.
2001
Sep
;
60
(
3
):
1097
105
.
[PubMed]
0085-2538
68.
Turkmen
K
,
Erdur
FM
.
The relationship between colonization of Oxalobacter formigenes serum oxalic acid and endothelial dysfunction in hemodialysis patients: from impaired colon to impaired endothelium
.
Med Hypotheses
.
2015
Mar
;
84
(
3
):
273
5
.
[PubMed]
0306-9877
69.
Kwak
C
,
Kim
HK
,
Kim
EC
,
Choi
MS
,
Kim
HH
.
Urinary oxalate levels and the enteric bacterium Oxalobacter formigenes in patients with calcium oxalate urolithiasis
.
Eur Urol
.
2003
Oct
;
44
(
4
):
475
81
.
[PubMed]
0302-2838
70.
Kumar
R
,
Mukherjee
M
,
Bhandari
M
,
Kumar
A
,
Sidhu
H
,
Mittal
RD
.
Role of Oxalobacter formigenes in calcium oxalate stone disease: a study from North India
.
Eur Urol
.
2002
Mar
;
41
(
3
):
318
22
.
[PubMed]
0302-2838
71.
Troxel
SA
,
Sidhu
H
,
Kaul
P
,
Low
RK
.
Intestinal Oxalobacter formigenes colonization in calcium oxalate stone formers and its relation to urinary oxalate
.
J Endourol
.
2003
Apr
;
17
(
3
):
173
6
.
[PubMed]
0892-7790
72.
Mikami
K
,
Akakura
K
,
Takei
K
,
Ueda
T
,
Mizoguchi
K
,
Noda
M
, et al.
Association of absence of intestinal oxalate degrading bacteria with urinary calcium oxalate stone formation
.
Int J Urol
.
2003
Jun
;
10
(
6
):
293
6
.
[PubMed]
0919-8172
73.
Alper
SL
.
Genetic diseases of acid-base transporters
.
Annu Rev Physiol
.
2002
;
64
(
1
):
899
923
.
[PubMed]
0066-4278
74.
Yenchitsomanus
PT
,
Kittanakom
S
,
Rungroj
N
,
Cordat
E
,
Reithmeier
RA
.
Molecular mechanisms of autosomal dominant and recessive distal renal tubular acidosis caused by SLC4A1 (AE1) mutations
.
J Mol Genet Med
.
2005
Nov
;
1
(
2
):
49
62
.
[PubMed]
1747-0862
75.
Basu
A
,
Chakrabarti
A
.
Hemoglobin interacting proteins and implications of spectrin hemoglobin interaction
.
J Proteomics
.
2015
Oct
;
128
:
469
75
.
[PubMed]
1874-3919
76.
Chu
H
,
Low
PS
.
Mapping of glycolytic enzyme-binding sites on human erythrocyte band 3
.
Biochem J
.
2006
Nov
;
400
(
1
):
143
51
.
[PubMed]
0264-6021
77.
Chang
SH
,
Low
PS
.
Identification of a critical ankyrin-binding loop on the cytoplasmic domain of erythrocyte membrane band 3 by crystal structure analysis and site-directed mutagenesis
.
J Biol Chem
.
2003
Feb
;
278
(
9
):
6879
84
.
[PubMed]
0021-9258
78.
Lombardo
CR
,
Willardson
BM
,
Low
PS
.
Localization of the protein 4.1-binding site on the cytoplasmic domain of erythrocyte membrane band 3
.
J Biol Chem
.
1992
May
;
267
(
14
):
9540
6
.
[PubMed]
0021-9258
79.
Low
PS
.
Structure and function of the cytoplasmic domain of band 3: center of erythrocyte membrane-peripheral protein interactions
.
Biochim Biophys Acta
.
1986
Sep
;
864
(
2
):
145
67
.
[PubMed]
0006-3002
80.
Groves
JD
,
Tanner
MJ
.
Topology studies with biosynthetic fragments identify interacting transmembrane regions of the human red-cell anion exchanger (band 3; AE1)
.
Biochem J
.
1999
Dec
;
344
(
Pt 3
):
687
97
.
[PubMed]
0264-6021
81.
Vince
JW
,
Reithmeier
RA
.
Carbonic anhydrase II binds to the carboxyl terminus of human band 3, the erythrocyte C1-/HCO3- exchanger
.
J Biol Chem
.
1998
Oct
;
273
(
43
):
28430
7
.
[PubMed]
0021-9258
82.
Alper
SL
. Molecular physiology and genetics of Na+-independent SLC4 anion exchangers. the Journal of Experimental Biology
2009
;212: 1672-1683
83.
Cousin
JL
,
Motais
R
.
Inhibition of anion permeability by amphiphilic compounds in human red cell: evidence for an interaction of niflumic acid with the band 3 protein
.
J Membr Biol
.
1979
Apr
;
46
(
2
):
125
53
.
[PubMed]
0022-2631
84.
Oehlschläger
S
,
Fuessel
S
,
Meye
A
,
Herrmann
J
,
Lotzkat
U
,
Froehner
M
, et al.
Importance of erythrocyte band III anion transporter (SLC4A1) on oxalate clearance of calcium oxalate monohydrate stone-formering patients vs. normal controls
.
Urology
.
2011
Jan
;
77
(
1
):
250.e1
5
.
[PubMed]
0090-4295
85.
Alper
SL
.
Molecular physiology of SLC4 anion exchangers.
Exp Physiol
2006
; 91.1 153–161
86.
Ribeiro
ML
,
Alloisio
N
,
Almeida
H
,
Gomes
C
,
Texier
P
,
Lemos
C
, et al.
Severe hereditary spherocytosis and distal renal tubular acidosis associated with the total absence of band 3
.
Blood
.
2000
Aug
;
96
(
4
):
1602
4
.
[PubMed]
0006-4971
87.
Trompeter
S
,
King
MJ
.
Hereditary spherocytosis
.
Paediatr Child Health
.
2019
;
•••
:
368
79
.1205-7088
88.
Jarolim
P
,
Palek
J
,
Amato
D
,
Hassan
K
,
Sapak
P
,
Nurse
GT
, et al.
Deletion in erythrocyte band 3 gene in malaria-resistant Southeast Asian ovalocytosis
.
Proc Natl Acad Sci USA
.
1991
Dec
;
88
(
24
):
11022
6
.
[PubMed]
0027-8424
89.
Cheung
JC
,
Li
J
,
Reithmeier
RA
.
Topology of transmembrane segments 1-4 in the human chloride/bicarbonate anion exchanger 1 (AE1) by scanning N-glycosylation mutagenesis
.
Biochem J
.
2005
Aug
;
390
(
Pt 1
):
137
44
.
[PubMed]
0264-6021
90.
Picard
V
,
Proust
A
,
Eveillard
M
,
Flatt
JF
,
Couec
ML
,
Caillaux
G
, et al.
Homozygous Southeast Asian ovalocytosis is a severe dyserythropoietic anemia associated with distal renal tubular acidosis
.
Blood
.
2014
Mar
;
123
(
12
):
1963
5
.
[PubMed]
0006-4971
91.
Bruce
LJ
,
Wrong
O
,
Toye
AM
,
Young
MT
,
Ogle
G
,
Ismail
Z
, et al.
Band 3 mutations, renal tubular acidosis and South-East Asian ovalocytosis in Malaysia and Papua New Guinea: loss of up to 95% band 3 transport in red cells
.
Biochem J
.
2000
Aug
;
350
(
Pt 1
):
41
51
.
[PubMed]
0264-6021
92.
Cordat
E
,
Reithmeier
RA
.
Expression and interaction of two compound heterozygous distal renal tubular acidosis mutants of kidney anion exchanger 1 in epithelial cells
.
Am J Physiol Renal Physiol
.
2006
Dec
;
291
(
6
):
F1354
61
.
[PubMed]
1931-857X
93.
Quilty
JA
,
Li
J
,
Reithmeier
RA
.
Impaired trafficking of distal renal tubular acidosis mutants of the human kidney anion exchanger kAE1
.
Am J Physiol Renal Physiol
.
2002
May
;
282
(
5
):
F810
20
.
[PubMed]
1931-857X
94.
Kittanakom
S
,
Cordat
E
,
Reithmeier
RA
.
Dominant-negative effect of Southeast Asian ovalocytosis anion exchanger 1 in compound heterozygous distal renal tubular acidosis
.
Biochem J
.
2008
Mar
;
410
(
2
):
271
81
.
[PubMed]
0264-6021
95.
Ungsupravate
D
,
Sawasdee
N
,
Khositseth
S
,
Udomchaiprasertkul
W
,
Khoprasert
S
,
Li
J
, et al.
Impaired trafficking and intracellular retention of mutant kidney anion exchanger 1 proteins (G701D and A858D) associated with distal renal tubular acidosis
.
Mol Membr Biol
.
2010
Apr
;
27
(
2-3
):
92
103
.
[PubMed]
0968-7688
96.
Nettuwakul
C
,
Sawasdee
N
,
Yenchitsomanus
PT
.
Rapid detection of solute carrier family 4, member 1 (SLC4A1) mutations and polymorphisms by high-resolution melting analysis
.
Clin Biochem
.
2010
Mar
;
43
(
4-5
):
497
504
.
[PubMed]
0009-9120
97.
Soleimani
M.
SLC26 Cl-/HCO3 - exchangers in the kidney: roles in health and disease. Kidney International advance online publication.
2013
; 2013(4).138
98.
Bissig
M
,
Hagenbuch
B
,
Stieger
B
,
Koller
T
,
Meier
PJ
.
Functional expression cloning of the canalicular sulfate transport system of rat hepatocytes
.
J Biol Chem
.
1994
Jan
;
269
(
4
):
3017
21
.
[PubMed]
0021-9258
99.
Karniski
LP
,
Lötscher
M
,
Fucentese
M
,
Hilfiker
H
,
Biber
J
,
Murer
H
.
Immunolocalization of sat-1 sulfate/oxalate/bicarbonate anion exchanger in the rat kidney
.
Am J Physiol
.
1998
Jul
;
275
(
1
):
F79
87
.
[PubMed]
0002-9513
100.
Quondamatteo
F
,
Krick
W
,
Hagos
Y
,
Krüger
MH
,
Neubauer-Saile
K
,
Herken
R
, et al.
Localization of the sulfate/anion exchanger in the rat liver
.
Am J Physiol Gastrointest Liver Physiol
.
2006
May
;
290
(
5
):
G1075
81
.
[PubMed]
0193-1857
101.
Regeer
RR
,
Lee
A
,
Markovich
D
.
Characterization of the human sulfate anion transporter (hsat-1) protein and gene (SAT1; SLC26A1)
.
DNA Cell Biol
.
2003
Feb
;
22
(
2
):
107
17
.
[PubMed]
1044-5498
102.
Brzica
H
,
Breljak
D
,
Krick
W
,
Lovrić
M
,
Burckhardt
G
,
Burckhardt
BC
, et al.
The liver and kidney expression of sulfate anion transporter sat-1 in rats exhibits male-dominant gender differences
.
Pflugers Arch
.
2009
Apr
;
457
(
6
):
1381
92
.
[PubMed]
0031-6768
103.
Breljak
D
,
Brzica
H
,
Vrhovac
I
,
Micek
V
,
Karaica
D
,
Ljubojević
M
, et al.
In female rats, ethylene glycol treatment elevates protein expression of hepatic and renal oxalate transporter sat-1 (Slc26a1) without inducing hyperoxaluria
.
Croat Med J
.
2015
Oct
;
56
(
5
):
447
59
.
[PubMed]
0353-9504
104.
Costa-Bauzá
A
,
Ramis
M
,
Montesinos
V
,
Grases
F
,
Conte
A
,
Pizá
P
, et al.
Type of renal calculi: variation with age and sex
.
World J Urol
.
2007
Aug
;
25
(
4
):
415
21
.
[PubMed]
0724-4983
105.
Markovich
D.
Slc13a1 and Slc26a1 KO models reveal physiological roles of anion transporters. union physiol. Sci./Am. Physiol. Soc.
2012
;1548-9213/12
106.
Dawson
PA
,
Russell
CS
,
Lee
S
,
McLeay
SC
,
van Dongen
JM
,
Cowley
DM
, et al.
Urolithiasis and hepatotoxicity are linked to the anion transporter Sat1 in mice
.
J Clin Invest
.
2010
Mar
;
120
(
3
):
706
12
.
[PubMed]
0021-9738
107.
Gee
HY
,
Jun
I
,
Braun
DA
,
Lawson
JA
,
Halbritter
J
,
Shril
S
, et al.
Mutations in SLC26A1 cause nephrolithiasis
.
Am J Hum Genet
.
2016
Jun
;
98
(
6
):
1228
34
.
[PubMed]
0002-9297
108.
Hästbacka
J
,
de la Chapelle
A
,
Mahtani
MM
,
Clines
G
,
Reeve-Daly
MP
,
Daly
M
, et al.
The diastrophic dysplasia gene encodes a novel sulfate transporter: positional cloning by fine-structure linkage disequilibrium mapping
.
Cell
.
1994
Sep
;
78
(
6
):
1073
87
.
[PubMed]
0092-8674
109.
Dorwart
MR
,
Shcheynikov
N
,
Yang
D
,
Muallem
S
.
The solute carrier 26 family of proteins in epithelial ion transport
.
Physiology (Bethesda)
.
2008
Apr
;
23
(
2
):
104
14
.
[PubMed]
1548-9213
110.
Hästbacka
J
,
Superti-Furga
A
,
Wilcox
WR
,
Rimoin
DL
,
Cohn
DH
,
Lander
ES
.
Sulfate transport in chondrodysplasia
.
Ann N Y Acad Sci
.
1996
Jun
;
785
(
785
):
131
6
.
[PubMed]
0077-8923
111.
Markovich
D
,
Aronson
PS
.
Specificity and regulation of renal sulfate transporters
.
Annu Rev Physiol
.
2007
;
69
(
1
):
361
75
.
[PubMed]
0066-4278
112.
Dwyer
E
,
Hyland
J
,
Modaff
P
,
Pauli
RM
.
Genotype-phenotype correlation in DTDST dysplasias: atelosteogenesis type II and diastrophic dysplasia variant in one family
.
Am J Med Genet A
.
2010
Dec
;
152A
(
12
):
3043
50
.
[PubMed]
1552-4825
113.
Park
M
,
Ohana
E
,
Choi
SY
,
Lee
MS
,
Park
JH
,
Muallem
S
.
Multiple roles of the SO4(2-)/Cl-/OH- exchanger protein Slc26a2 in chondrocyte functions
.
J Biol Chem
.
2014
Jan
;
289
(
4
):
1993
2001
.
[PubMed]
0021-9258
114.
Ohana
E
,
Shcheynikov
N
,
Park
M
,
Muallem
S
.
Solute carrier family 26 member a2 (Slc26a2) protein functions as an electroneutral SOFormula/OH-/Cl- exchanger regulated by extracellular Cl-
.
J Biol Chem
.
2012
Feb
;
287
(
7
):
5122
32
.
[PubMed]
0021-9258
115.
Schweinfest
CW
,
Henderson
KW
,
Suster
S
,
Kondoh
N
,
Papas
TS
.
Identification of a colon mucosa gene that is down-regulated in colon adenomas and adenocarcinomas
.
Proc Natl Acad Sci USA
.
1993
May
;
90
(
9
):
4166
70
.
[PubMed]
0027-8424
116.
Freel
RW
,
Whittamore
JM
,
Hatch
M
.
Transcellular oxalate and Cl- absorption in mouse intestine is mediated by the DRA anion exchanger Slc26a3, and DRA deletion decreases urinary oxalate
.
Am J Physiol Gastrointest Liver Physiol
.
2013
Oct
;
305
(
7
):
G520
7
.
[PubMed]
0193-1857
117.
Stenson
PD
,
Mort
M
,
Ball
EV
,
Shaw
K
,
Phillips
A
,
Cooper
DN
.
The Human Gene Mutation Database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine
.
Hum Genet
.
2014
Jan
;
133
(
1
):
1
9
.
[PubMed]
0340-6717
118.
Schweinfest
CW
,
Spyropoulos
DD
,
Henderson
KW
,
Kim
JH
,
Chapman
JM
,
Barone
S
, et al.
slc26a3 (dra)-deficient mice display chloride-losing diarrhea, enhanced colonic proliferation, and distinct up-regulation of ion transporters in the colon
.
J Biol Chem
.
2006
Dec
;
281
(
49
):
37962
71
.
[PubMed]
0021-9258
119.
Lohi
H
,
Lamprecht
G
,
Markovich
D
,
Heil
A
,
Kujala
M
,
Seidler
U
, et al.
Isoforms of SLC26A6 mediate anion transport and have functional PDZ interaction domains
.
Am J Physiol Cell Physiol
.
2003
Mar
;
284
(
3
):
C769
79
.
[PubMed]
0363-6143
120.
Ohana
E
,
Shcheynikov
N
,
Yang
D
,
So
I
,
Muallem
S
.
Determinants of coupled transport and uncoupled current by the electrogenic SLC26 transporters
.
J Gen Physiol
.
2011
Feb
;
137
(
2
):
239
51
.
[PubMed]
0022-1295
121.
Chernova
MN
,
Jiang
L
,
Friedman
DJ
,
Darman
RB
,
Lohi
H
,
Kere
J
, et al.
Functional comparison of mouse slc26a6 anion exchanger with human SLC26A6 polypeptide variants: differences in anion selectivity, regulation, and electrogenicity
.
J Biol Chem
.
2005
Mar
;
280
(
9
):
8564
80
.
[PubMed]
0021-9258
122.
Lohi
H
,
Kujala
M
,
Makela
S
,
Lehtonen
E
,
Kestila
M
,
Saarialho-Kere
U
, et al.
Functional characterization of three novel tissue-specific anion exchangers SLC26A7, -A8, and -A9
.
J Biol Chem
.
2002
Apr
;
277
(
16
):
14246
54
.
[PubMed]
0021-9258
123.
Petrovic
S
,
Barone
S
,
Xu
J
,
Conforti
L
,
Ma
L
,
Kujala
M
, et al.
SLC26A7: a basolateral Cl/ HCO3 cells of the outer medullary collecting duct
.
Am J Physiol Renal Physiol
.
2004
;
286
(
1
):
F161
9
.
[PubMed]
1931-857X
124.
Marengo
SR
,
Chen
DH
,
Evan
AP
,
Sommer
AJ
,
Stowe
NT
,
Ferguson
DG
, et al.
Continuous infusion of oxalate by minipumps induces calcium oxalate nephrocalcinosis
.
Urol Res
.
2006
Jun
;
34
(
3
):
200
10
.
[PubMed]
0300-5623
125.
Evan
AP
,
Coe
FL
,
Lingeman
JE
,
Shao
Y
,
Sommer
AJ
,
Bledsoe
SB
, et al.
Mechanism of formation of human calcium oxalate renal stones on Randall’s plaque
.
Anat Rec (Hoboken)
.
2007
Oct
;
290
(
10
):
1315
23
.
[PubMed]
1932-8486
126.
Xu
J
,
Song
P
,
Nakamura
S
,
Miller
M
,
Barone
S
,
Alper
SL
. Deletion of the chloride transporter slc26a7 causes distal renal tubular acidosis and impairs gastric acid secretion. J. Biol. Chem.
2009
.284 (43): 29470–29479.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.